mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
764 lines
28 KiB
Python
764 lines
28 KiB
Python
|
# Copyright (c) OpenMMLab. All rights reserved.
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
from mmcv.cnn import build_norm_layer
|
||
|
from mmcv.cnn.bricks.transformer import FFN, build_dropout
|
||
|
from mmengine.model import BaseModule
|
||
|
from mmengine.utils import to_2tuple
|
||
|
|
||
|
from mmseg.registry import MODELS
|
||
|
from ..utils import FullAttention, LinearAttention
|
||
|
|
||
|
|
||
|
class AGWindowMSA(BaseModule):
|
||
|
"""Appearance Guidance Window based multi-head self-attention (W-MSA)
|
||
|
module with relative position bias.
|
||
|
|
||
|
Args:
|
||
|
embed_dims (int): Number of input channels.
|
||
|
appearance_dims (int): Number of appearance guidance feature channels.
|
||
|
num_heads (int): Number of attention heads.
|
||
|
window_size (tuple[int]): The height and width of the window.
|
||
|
qkv_bias (bool, optional): If True, add a learnable bias to q, k, v.
|
||
|
Default: True.
|
||
|
qk_scale (float | None, optional): Override default qk scale of
|
||
|
head_dim ** -0.5 if set. Default: None.
|
||
|
attn_drop_rate (float, optional): Dropout ratio of attention weight.
|
||
|
Default: 0.0
|
||
|
proj_drop_rate (float, optional): Dropout ratio of output. Default: 0.
|
||
|
init_cfg (dict | None, optional): The Config for initialization.
|
||
|
Default: None.
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
embed_dims,
|
||
|
appearance_dims,
|
||
|
num_heads,
|
||
|
window_size,
|
||
|
qkv_bias=True,
|
||
|
qk_scale=None,
|
||
|
attn_drop_rate=0.,
|
||
|
proj_drop_rate=0.,
|
||
|
init_cfg=None):
|
||
|
|
||
|
super().__init__(init_cfg=init_cfg)
|
||
|
self.embed_dims = embed_dims
|
||
|
self.appearance_dims = appearance_dims
|
||
|
self.window_size = window_size # Wh, Ww
|
||
|
self.num_heads = num_heads
|
||
|
head_embed_dims = embed_dims // num_heads
|
||
|
self.scale = qk_scale or head_embed_dims**-0.5
|
||
|
|
||
|
# About 2x faster than original impl
|
||
|
Wh, Ww = self.window_size
|
||
|
rel_index_coords = self.double_step_seq(2 * Ww - 1, Wh, 1, Ww)
|
||
|
rel_position_index = rel_index_coords + rel_index_coords.T
|
||
|
rel_position_index = rel_position_index.flip(1).contiguous()
|
||
|
self.register_buffer('relative_position_index', rel_position_index)
|
||
|
|
||
|
self.qk = nn.Linear(
|
||
|
embed_dims + appearance_dims, embed_dims * 2, bias=qkv_bias)
|
||
|
self.v = nn.Linear(embed_dims, embed_dims, bias=qkv_bias)
|
||
|
self.attn_drop = nn.Dropout(attn_drop_rate)
|
||
|
self.proj = nn.Linear(embed_dims, embed_dims)
|
||
|
self.proj_drop = nn.Dropout(proj_drop_rate)
|
||
|
|
||
|
self.softmax = nn.Softmax(dim=-1)
|
||
|
|
||
|
def forward(self, x, mask=None):
|
||
|
"""
|
||
|
Args:
|
||
|
x (tensor): input features with shape of (num_windows*B, N, C),
|
||
|
C = embed_dims + appearance_dims.
|
||
|
mask (tensor | None, Optional): mask with shape of (num_windows,
|
||
|
Wh*Ww, Wh*Ww), value should be between (-inf, 0].
|
||
|
"""
|
||
|
B, N, _ = x.shape
|
||
|
qk = self.qk(x).reshape(B, N, 2, self.num_heads,
|
||
|
self.embed_dims // self.num_heads).permute(
|
||
|
2, 0, 3, 1,
|
||
|
4) # 2 B NUM_HEADS N embed_dims//NUM_HEADS
|
||
|
v = self.v(x[:, :, :self.embed_dims]).reshape(
|
||
|
B, N, self.num_heads, self.embed_dims // self.num_heads).permute(
|
||
|
0, 2, 1, 3) # B NUM_HEADS N embed_dims//NUM_HEADS
|
||
|
# make torchscript happy (cannot use tensor as tuple)
|
||
|
q, k = qk[0], qk[1]
|
||
|
|
||
|
q = q * self.scale
|
||
|
attn = (q @ k.transpose(-2, -1))
|
||
|
|
||
|
if mask is not None:
|
||
|
nW = mask.shape[0]
|
||
|
attn = attn.view(B // nW, nW, self.num_heads, N,
|
||
|
N) + mask.unsqueeze(1).unsqueeze(0)
|
||
|
attn = attn.view(-1, self.num_heads, N, N)
|
||
|
attn = self.softmax(attn)
|
||
|
|
||
|
attn = self.attn_drop(attn)
|
||
|
|
||
|
x = (attn @ v).transpose(1, 2).reshape(B, N, self.embed_dims)
|
||
|
x = self.proj(x)
|
||
|
x = self.proj_drop(x)
|
||
|
return x
|
||
|
|
||
|
@staticmethod
|
||
|
def double_step_seq(step1, len1, step2, len2):
|
||
|
"""Double step sequence."""
|
||
|
seq1 = torch.arange(0, step1 * len1, step1)
|
||
|
seq2 = torch.arange(0, step2 * len2, step2)
|
||
|
return (seq1[:, None] + seq2[None, :]).reshape(1, -1)
|
||
|
|
||
|
|
||
|
class AGShiftWindowMSA(BaseModule):
|
||
|
"""Appearance Guidance Shifted Window Multihead Self-Attention Module.
|
||
|
|
||
|
Args:
|
||
|
embed_dims (int): Number of input channels.
|
||
|
appearance_dims (int): Number of appearance guidance channels
|
||
|
num_heads (int): Number of attention heads.
|
||
|
window_size (int): The height and width of the window.
|
||
|
shift_size (int, optional): The shift step of each window towards
|
||
|
right-bottom. If zero, act as regular window-msa. Defaults to 0.
|
||
|
qkv_bias (bool, optional): If True, add a learnable bias to q, k, v.
|
||
|
Default: True
|
||
|
qk_scale (float | None, optional): Override default qk scale of
|
||
|
head_dim ** -0.5 if set. Defaults: None.
|
||
|
attn_drop_rate (float, optional): Dropout ratio of attention weight.
|
||
|
Defaults: 0.
|
||
|
proj_drop_rate (float, optional): Dropout ratio of output.
|
||
|
Defaults: 0.
|
||
|
dropout_layer (dict, optional): The dropout_layer used before output.
|
||
|
Defaults: dict(type='DropPath', drop_prob=0.).
|
||
|
init_cfg (dict, optional): The extra config for initialization.
|
||
|
Default: None.
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
embed_dims,
|
||
|
appearance_dims,
|
||
|
num_heads,
|
||
|
window_size,
|
||
|
shift_size=0,
|
||
|
qkv_bias=True,
|
||
|
qk_scale=None,
|
||
|
attn_drop_rate=0,
|
||
|
proj_drop_rate=0,
|
||
|
dropout_layer=dict(type='DropPath', drop_prob=0.),
|
||
|
init_cfg=None):
|
||
|
super().__init__(init_cfg=init_cfg)
|
||
|
|
||
|
self.window_size = window_size
|
||
|
self.shift_size = shift_size
|
||
|
assert 0 <= self.shift_size < self.window_size
|
||
|
|
||
|
self.w_msa = AGWindowMSA(
|
||
|
embed_dims=embed_dims,
|
||
|
appearance_dims=appearance_dims,
|
||
|
num_heads=num_heads,
|
||
|
window_size=to_2tuple(window_size),
|
||
|
qkv_bias=qkv_bias,
|
||
|
qk_scale=qk_scale,
|
||
|
attn_drop_rate=attn_drop_rate,
|
||
|
proj_drop_rate=proj_drop_rate,
|
||
|
init_cfg=None)
|
||
|
|
||
|
self.drop = build_dropout(dropout_layer)
|
||
|
|
||
|
def forward(self, query, hw_shape):
|
||
|
"""
|
||
|
Args:
|
||
|
query: The input query.
|
||
|
hw_shape: The shape of the feature height and width.
|
||
|
"""
|
||
|
B, L, C = query.shape
|
||
|
H, W = hw_shape
|
||
|
assert L == H * W, 'input feature has wrong size'
|
||
|
query = query.view(B, H, W, C)
|
||
|
|
||
|
# pad feature maps to multiples of window size
|
||
|
pad_r = (self.window_size - W % self.window_size) % self.window_size
|
||
|
pad_b = (self.window_size - H % self.window_size) % self.window_size
|
||
|
query = F.pad(query, (0, 0, 0, pad_r, 0, pad_b))
|
||
|
H_pad, W_pad = query.shape[1], query.shape[2]
|
||
|
|
||
|
# cyclic shift
|
||
|
if self.shift_size > 0:
|
||
|
shifted_query = torch.roll(
|
||
|
query,
|
||
|
shifts=(-self.shift_size, -self.shift_size),
|
||
|
dims=(1, 2))
|
||
|
|
||
|
# calculate attention mask for SW-MSA
|
||
|
img_mask = torch.zeros((1, H_pad, W_pad, 1), device=query.device)
|
||
|
h_slices = (slice(0, -self.window_size),
|
||
|
slice(-self.window_size,
|
||
|
-self.shift_size), slice(-self.shift_size, None))
|
||
|
w_slices = (slice(0, -self.window_size),
|
||
|
slice(-self.window_size,
|
||
|
-self.shift_size), slice(-self.shift_size, None))
|
||
|
cnt = 0
|
||
|
for h in h_slices:
|
||
|
for w in w_slices:
|
||
|
img_mask[:, h, w, :] = cnt
|
||
|
cnt += 1
|
||
|
|
||
|
# nW, window_size, window_size, 1
|
||
|
mask_windows = self.window_partition(img_mask)
|
||
|
mask_windows = mask_windows.view(
|
||
|
-1, self.window_size * self.window_size)
|
||
|
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
||
|
attn_mask = attn_mask.masked_fill(attn_mask != 0,
|
||
|
float(-100.0)).masked_fill(
|
||
|
attn_mask == 0, float(0.0))
|
||
|
else:
|
||
|
shifted_query = query
|
||
|
attn_mask = None
|
||
|
|
||
|
# nW*B, window_size, window_size, C
|
||
|
query_windows = self.window_partition(shifted_query)
|
||
|
# nW*B, window_size*window_size, C
|
||
|
query_windows = query_windows.view(-1, self.window_size**2, C)
|
||
|
|
||
|
# W-MSA/SW-MSA (nW*B, window_size*window_size, C)
|
||
|
attn_windows = self.w_msa(query_windows, mask=attn_mask)
|
||
|
|
||
|
# merge windows
|
||
|
attn_windows = attn_windows.view(-1, self.window_size,
|
||
|
self.window_size,
|
||
|
self.w_msa.embed_dims)
|
||
|
|
||
|
# B H' W' self.w_msa.embed_dims
|
||
|
shifted_x = self.window_reverse(attn_windows, H_pad, W_pad)
|
||
|
# reverse cyclic shift
|
||
|
if self.shift_size > 0:
|
||
|
x = torch.roll(
|
||
|
shifted_x,
|
||
|
shifts=(self.shift_size, self.shift_size),
|
||
|
dims=(1, 2))
|
||
|
else:
|
||
|
x = shifted_x
|
||
|
|
||
|
if pad_r > 0 or pad_b:
|
||
|
x = x[:, :H, :W, :].contiguous()
|
||
|
|
||
|
x = x.view(B, H * W, self.w_msa.embed_dims)
|
||
|
|
||
|
x = self.drop(x)
|
||
|
return x
|
||
|
|
||
|
def window_reverse(self, windows, H, W):
|
||
|
"""
|
||
|
Args:
|
||
|
windows: (num_windows*B, window_size, window_size, C)
|
||
|
H (int): Height of image
|
||
|
W (int): Width of image
|
||
|
Returns:
|
||
|
x: (B, H, W, C)
|
||
|
"""
|
||
|
window_size = self.window_size
|
||
|
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
||
|
x = windows.view(B, H // window_size, W // window_size, window_size,
|
||
|
window_size, -1)
|
||
|
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
||
|
return x
|
||
|
|
||
|
def window_partition(self, x):
|
||
|
"""
|
||
|
Args:
|
||
|
x: (B, H, W, C)
|
||
|
Returns:
|
||
|
windows: (num_windows*B, window_size, window_size, C)
|
||
|
"""
|
||
|
B, H, W, C = x.shape
|
||
|
window_size = self.window_size
|
||
|
x = x.view(B, H // window_size, window_size, W // window_size,
|
||
|
window_size, C)
|
||
|
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous()
|
||
|
windows = windows.view(-1, window_size, window_size, C)
|
||
|
return windows
|
||
|
|
||
|
|
||
|
class AGSwinBlock(BaseModule):
|
||
|
"""Appearance Guidance Swin Transformer Block.
|
||
|
|
||
|
Args:
|
||
|
embed_dims (int): The feature dimension.
|
||
|
appearance_dims (int): The appearance guidance dimension.
|
||
|
num_heads (int): Parallel attention heads.
|
||
|
mlp_ratios (int): The hidden dimension ratio w.r.t. embed_dims
|
||
|
for FFNs.
|
||
|
window_size (int, optional): The local window scale.
|
||
|
Default: 7.
|
||
|
shift (bool, optional): whether to shift window or not.
|
||
|
Default False.
|
||
|
qkv_bias (bool, optional): enable bias for qkv if True.
|
||
|
Default: True.
|
||
|
qk_scale (float | None, optional): Override default qk scale of
|
||
|
head_dim ** -0.5 if set. Default: None.
|
||
|
drop_rate (float, optional): Dropout rate. Default: 0.
|
||
|
attn_drop_rate (float, optional): Attention dropout rate.
|
||
|
Default: 0.
|
||
|
drop_path_rate (float, optional): Stochastic depth rate.
|
||
|
Default: 0.
|
||
|
act_cfg (dict, optional): The config dict of activation function.
|
||
|
Default: dict(type='GELU').
|
||
|
norm_cfg (dict, optional): The config dict of normalization.
|
||
|
Default: dict(type='LN').
|
||
|
init_cfg (dict | list | None, optional): The init config.
|
||
|
Default: None.
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
embed_dims,
|
||
|
appearance_dims,
|
||
|
num_heads,
|
||
|
mlp_ratios=4,
|
||
|
window_size=7,
|
||
|
shift=False,
|
||
|
qkv_bias=True,
|
||
|
qk_scale=None,
|
||
|
drop_rate=0.,
|
||
|
attn_drop_rate=0.,
|
||
|
drop_path_rate=0.,
|
||
|
act_cfg=dict(type='GELU'),
|
||
|
norm_cfg=dict(type='LN'),
|
||
|
init_cfg=None):
|
||
|
super().__init__(init_cfg=init_cfg)
|
||
|
self.norm1 = build_norm_layer(norm_cfg, embed_dims)[1]
|
||
|
self.attn = AGShiftWindowMSA(
|
||
|
embed_dims=embed_dims,
|
||
|
appearance_dims=appearance_dims,
|
||
|
num_heads=num_heads,
|
||
|
window_size=window_size,
|
||
|
shift_size=window_size // 2 if shift else 0,
|
||
|
qkv_bias=qkv_bias,
|
||
|
qk_scale=qk_scale,
|
||
|
attn_drop_rate=attn_drop_rate,
|
||
|
proj_drop_rate=drop_rate,
|
||
|
dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate),
|
||
|
init_cfg=None)
|
||
|
|
||
|
self.norm2 = build_norm_layer(norm_cfg, embed_dims)[1]
|
||
|
self.ffn = FFN(
|
||
|
embed_dims=embed_dims,
|
||
|
feedforward_channels=embed_dims * mlp_ratios,
|
||
|
num_fcs=2,
|
||
|
ffn_drop=drop_rate,
|
||
|
dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate),
|
||
|
act_cfg=act_cfg,
|
||
|
add_identity=True,
|
||
|
init_cfg=None)
|
||
|
|
||
|
def forward(self, inputs, hw_shape):
|
||
|
"""
|
||
|
Args:
|
||
|
inputs (list[Tensor]): appearance_guidance (B, H, W, C);
|
||
|
x (B, L, C)
|
||
|
hw_shape (tuple[int]): shape of feature.
|
||
|
"""
|
||
|
x, appearance_guidance = inputs
|
||
|
B, L, C = x.shape
|
||
|
H, W = hw_shape
|
||
|
assert L == H * W, 'input feature has wrong size'
|
||
|
|
||
|
identity = x
|
||
|
x = self.norm1(x)
|
||
|
|
||
|
# appearance guidance
|
||
|
x = x.view(B, H, W, C)
|
||
|
if appearance_guidance is not None:
|
||
|
x = torch.cat([x, appearance_guidance], dim=-1).flatten(1, 2)
|
||
|
|
||
|
x = self.attn(x, hw_shape)
|
||
|
|
||
|
x = x + identity
|
||
|
|
||
|
identity = x
|
||
|
x = self.norm2(x)
|
||
|
x = self.ffn(x, identity=identity)
|
||
|
|
||
|
return x
|
||
|
|
||
|
|
||
|
@MODELS.register_module()
|
||
|
class SpatialAggregateLayer(BaseModule):
|
||
|
"""Spatial aggregation layer of CAT-Seg.
|
||
|
|
||
|
Args:
|
||
|
embed_dims (int): The feature dimension.
|
||
|
appearance_dims (int): The appearance guidance dimension.
|
||
|
num_heads (int): Parallel attention heads.
|
||
|
mlp_ratios (int): The hidden dimension ratio w.r.t. embed_dims
|
||
|
for FFNs.
|
||
|
window_size (int, optional): The local window scale. Default: 7.
|
||
|
qk_scale (float | None, optional): Override default qk scale of
|
||
|
head_dim ** -0.5 if set. Default: None.
|
||
|
init_cfg (dict | list | None, optional): The init config.
|
||
|
Default: None.
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
embed_dims,
|
||
|
appearance_dims,
|
||
|
num_heads,
|
||
|
mlp_ratios,
|
||
|
window_size=7,
|
||
|
qk_scale=None,
|
||
|
init_cfg=None):
|
||
|
super().__init__(init_cfg=init_cfg)
|
||
|
self.block_1 = AGSwinBlock(
|
||
|
embed_dims,
|
||
|
appearance_dims,
|
||
|
num_heads,
|
||
|
mlp_ratios,
|
||
|
window_size=window_size,
|
||
|
shift=False,
|
||
|
qk_scale=qk_scale)
|
||
|
self.block_2 = AGSwinBlock(
|
||
|
embed_dims,
|
||
|
appearance_dims,
|
||
|
num_heads,
|
||
|
mlp_ratios,
|
||
|
window_size=window_size,
|
||
|
shift=True,
|
||
|
qk_scale=qk_scale)
|
||
|
self.guidance_norm = nn.LayerNorm(
|
||
|
appearance_dims) if appearance_dims > 0 else None
|
||
|
|
||
|
def forward(self, x, appearance_guidance):
|
||
|
"""
|
||
|
Args:
|
||
|
x (torch.Tensor): B C T H W.
|
||
|
appearance_guidance (torch.Tensor): B C H W.
|
||
|
"""
|
||
|
B, C, T, H, W = x.shape
|
||
|
x = x.permute(0, 2, 3, 4, 1).flatten(0, 1).flatten(1, 2) # BT, HW, C
|
||
|
if appearance_guidance is not None:
|
||
|
appearance_guidance = appearance_guidance.repeat(
|
||
|
T, 1, 1, 1).permute(0, 2, 3, 1) # BT, HW, C
|
||
|
appearance_guidance = self.guidance_norm(appearance_guidance)
|
||
|
else:
|
||
|
assert self.appearance_dims == 0
|
||
|
x = self.block_1((x, appearance_guidance), (H, W))
|
||
|
x = self.block_2((x, appearance_guidance), (H, W))
|
||
|
x = x.transpose(1, 2).reshape(B, T, C, -1)
|
||
|
x = x.transpose(1, 2).reshape(B, C, T, H, W)
|
||
|
return x
|
||
|
|
||
|
|
||
|
class AttentionLayer(nn.Module):
|
||
|
"""Attention layer for ClassAggregration of CAT-Seg.
|
||
|
|
||
|
Source: https://github.com/KU-CVLAB/CAT-Seg/blob/main/cat_seg/modeling/transformer/model.py#L310 # noqa
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
hidden_dim,
|
||
|
guidance_dim,
|
||
|
nheads=8,
|
||
|
attention_type='linear'):
|
||
|
super().__init__()
|
||
|
self.nheads = nheads
|
||
|
self.q = nn.Linear(hidden_dim + guidance_dim, hidden_dim)
|
||
|
self.k = nn.Linear(hidden_dim + guidance_dim, hidden_dim)
|
||
|
self.v = nn.Linear(hidden_dim, hidden_dim)
|
||
|
|
||
|
if attention_type == 'linear':
|
||
|
self.attention = LinearAttention()
|
||
|
elif attention_type == 'full':
|
||
|
self.attention = FullAttention()
|
||
|
else:
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def forward(self, x, guidance=None):
|
||
|
"""
|
||
|
Args:
|
||
|
x: B*H_p*W_p, T, C
|
||
|
guidance: B*H_p*W_p, T, C
|
||
|
"""
|
||
|
B, L, _ = x.shape
|
||
|
q = self.q(torch.cat([x, guidance],
|
||
|
dim=-1)) if guidance is not None else self.q(x)
|
||
|
k = self.k(torch.cat([x, guidance],
|
||
|
dim=-1)) if guidance is not None else self.k(x)
|
||
|
v = self.v(x)
|
||
|
|
||
|
q = q.reshape(B, L, self.nheads, -1)
|
||
|
k = k.reshape(B, L, self.nheads, -1)
|
||
|
v = v.reshape(B, L, self.nheads, -1)
|
||
|
|
||
|
out = self.attention(q, k, v)
|
||
|
out = out.reshape(B, L, -1)
|
||
|
return out
|
||
|
|
||
|
|
||
|
@MODELS.register_module()
|
||
|
class ClassAggregateLayer(BaseModule):
|
||
|
"""Class aggregation layer of CAT-Seg.
|
||
|
|
||
|
Args:
|
||
|
hidden_dims (int): The feature dimension.
|
||
|
guidance_dims (int): The appearance guidance dimension.
|
||
|
num_heads (int): Parallel attention heads.
|
||
|
attention_type (str): Type of attention layer. Default: 'linear'.
|
||
|
pooling_size (tuple[int] | list[int]): Pooling size.
|
||
|
init_cfg (dict | list | None, optional): The init config.
|
||
|
Default: None.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
hidden_dims=64,
|
||
|
guidance_dims=64,
|
||
|
num_heads=8,
|
||
|
attention_type='linear',
|
||
|
pooling_size=(4, 4),
|
||
|
init_cfg=None,
|
||
|
):
|
||
|
super().__init__(init_cfg=init_cfg)
|
||
|
self.pool = nn.AvgPool2d(pooling_size)
|
||
|
self.attention = AttentionLayer(
|
||
|
hidden_dims,
|
||
|
guidance_dims,
|
||
|
nheads=num_heads,
|
||
|
attention_type=attention_type)
|
||
|
self.MLP = FFN(
|
||
|
embed_dims=hidden_dims,
|
||
|
feedforward_channels=hidden_dims * 4,
|
||
|
num_fcs=2)
|
||
|
self.norm1 = nn.LayerNorm(hidden_dims)
|
||
|
self.norm2 = nn.LayerNorm(hidden_dims)
|
||
|
|
||
|
def pool_features(self, x):
|
||
|
"""Intermediate pooling layer for computational efficiency.
|
||
|
|
||
|
Args:
|
||
|
x: B, C, T, H, W
|
||
|
"""
|
||
|
B, C, T, H, W = x.shape
|
||
|
x = x.transpose(1, 2).reshape(-1, C, H, W)
|
||
|
x = self.pool(x)
|
||
|
*_, H_, W_ = x.shape
|
||
|
x = x.reshape(B, T, C, H_, W_).transpose(1, 2)
|
||
|
return x
|
||
|
|
||
|
def forward(self, x, guidance):
|
||
|
"""
|
||
|
Args:
|
||
|
x: B, C, T, H, W
|
||
|
guidance: B, T, C
|
||
|
"""
|
||
|
B, C, T, H, W = x.size()
|
||
|
x_pool = self.pool_features(x)
|
||
|
*_, H_pool, W_pool = x_pool.size()
|
||
|
|
||
|
x_pool = x_pool.permute(0, 3, 4, 2, 1).reshape(-1, T, C)
|
||
|
# B*H_p*W_p T C
|
||
|
if guidance is not None:
|
||
|
guidance = guidance.repeat(H_pool * W_pool, 1, 1)
|
||
|
|
||
|
x_pool = x_pool + self.attention(self.norm1(x_pool),
|
||
|
guidance) # Attention
|
||
|
x_pool = x_pool + self.MLP(self.norm2(x_pool)) # MLP
|
||
|
|
||
|
x_pool = x_pool.reshape(B, H_pool * W_pool, T,
|
||
|
C).permute(0, 2, 3, 1).reshape(
|
||
|
B, T, C, H_pool,
|
||
|
W_pool).flatten(0, 1) # BT C H_p W_p
|
||
|
x_pool = F.interpolate(
|
||
|
x_pool, size=(H, W), mode='bilinear', align_corners=True)
|
||
|
x_pool = x_pool.reshape(B, T, C, H, W).transpose(1, 2) # B C T H W
|
||
|
x = x + x_pool # Residual
|
||
|
|
||
|
return x
|
||
|
|
||
|
|
||
|
@MODELS.register_module()
|
||
|
class AggregatorLayer(BaseModule):
|
||
|
"""Single Aggregator Layer of CAT-Seg."""
|
||
|
|
||
|
def __init__(self,
|
||
|
embed_dims=64,
|
||
|
text_guidance_dims=512,
|
||
|
appearance_guidance_dims=512,
|
||
|
num_heads=4,
|
||
|
mlp_ratios=4,
|
||
|
window_size=7,
|
||
|
attention_type='linear',
|
||
|
pooling_size=(2, 2),
|
||
|
init_cfg=None) -> None:
|
||
|
super().__init__(init_cfg=init_cfg)
|
||
|
self.spatial_agg = SpatialAggregateLayer(
|
||
|
embed_dims,
|
||
|
appearance_guidance_dims,
|
||
|
num_heads=num_heads,
|
||
|
mlp_ratios=mlp_ratios,
|
||
|
window_size=window_size)
|
||
|
self.class_agg = ClassAggregateLayer(
|
||
|
embed_dims,
|
||
|
text_guidance_dims,
|
||
|
num_heads=num_heads,
|
||
|
attention_type=attention_type,
|
||
|
pooling_size=pooling_size)
|
||
|
|
||
|
def forward(self, x, appearance_guidance, text_guidance):
|
||
|
"""
|
||
|
Args:
|
||
|
x: B C T H W
|
||
|
"""
|
||
|
x = self.spatial_agg(x, appearance_guidance)
|
||
|
x = self.class_agg(x, text_guidance)
|
||
|
return x
|
||
|
|
||
|
|
||
|
@MODELS.register_module()
|
||
|
class CATSegAggregator(BaseModule):
|
||
|
"""CATSeg Aggregator.
|
||
|
|
||
|
This Aggregator is the mmseg implementation of
|
||
|
`CAT-Seg <https://arxiv.org/abs/2303.11797>`_.
|
||
|
|
||
|
Args:
|
||
|
text_guidance_dim (int): Text guidance dimensions. Default: 512.
|
||
|
text_guidance_proj_dim (int): Text guidance projection dimensions.
|
||
|
Default: 128.
|
||
|
appearance_guidance_dim (int): Appearance guidance dimensions.
|
||
|
Default: 512.
|
||
|
appearance_guidance_proj_dim (int): Appearance guidance projection
|
||
|
dimensions. Default: 128.
|
||
|
num_layers (int): Aggregator layer number. Default: 4.
|
||
|
num_heads (int): Attention layer head number. Default: 4.
|
||
|
embed_dims (int): Input feature dimensions. Default: 128.
|
||
|
pooling_size (tuple | list): Pooling size of the class aggregator
|
||
|
layer. Default: (6, 6).
|
||
|
mlp_ratios (int): The hidden dimension ratio w.r.t. input dimension.
|
||
|
Default: 4.
|
||
|
window_size (int): Swin block window size. Default:12.
|
||
|
attention_type (str): Attention type of class aggregator layer.
|
||
|
Default:'linear'.
|
||
|
prompt_channel (int): Prompt channels. Default: 80.
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
text_guidance_dim=512,
|
||
|
text_guidance_proj_dim=128,
|
||
|
appearance_guidance_dim=512,
|
||
|
appearance_guidance_proj_dim=128,
|
||
|
num_layers=4,
|
||
|
num_heads=4,
|
||
|
embed_dims=128,
|
||
|
pooling_size=(6, 6),
|
||
|
mlp_ratios=4,
|
||
|
window_size=12,
|
||
|
attention_type='linear',
|
||
|
prompt_channel=80,
|
||
|
**kwargs):
|
||
|
super().__init__(**kwargs)
|
||
|
self.num_layers = num_layers
|
||
|
self.embed_dims = embed_dims
|
||
|
|
||
|
self.layers = nn.ModuleList([
|
||
|
AggregatorLayer(
|
||
|
embed_dims=embed_dims,
|
||
|
text_guidance_dims=text_guidance_proj_dim,
|
||
|
appearance_guidance_dims=appearance_guidance_proj_dim,
|
||
|
num_heads=num_heads,
|
||
|
mlp_ratios=mlp_ratios,
|
||
|
window_size=window_size,
|
||
|
attention_type=attention_type,
|
||
|
pooling_size=pooling_size) for _ in range(num_layers)
|
||
|
])
|
||
|
|
||
|
self.conv1 = nn.Conv2d(
|
||
|
prompt_channel, embed_dims, kernel_size=7, stride=1, padding=3)
|
||
|
|
||
|
self.guidance_projection = nn.Sequential(
|
||
|
nn.Conv2d(
|
||
|
appearance_guidance_dim,
|
||
|
appearance_guidance_proj_dim,
|
||
|
kernel_size=3,
|
||
|
stride=1,
|
||
|
padding=1),
|
||
|
nn.ReLU(),
|
||
|
) if appearance_guidance_dim > 0 else None
|
||
|
|
||
|
self.text_guidance_projection = nn.Sequential(
|
||
|
nn.Linear(text_guidance_dim, text_guidance_proj_dim),
|
||
|
nn.ReLU(),
|
||
|
) if text_guidance_dim > 0 else None
|
||
|
|
||
|
def feature_map(self, img_feats, text_feats):
|
||
|
"""Concatenation type cost volume.
|
||
|
|
||
|
For ablation study of cost volume type.
|
||
|
"""
|
||
|
img_feats = F.normalize(img_feats, dim=1) # B C H W
|
||
|
img_feats = img_feats.unsqueeze(2).repeat(1, 1, text_feats.shape[1], 1,
|
||
|
1)
|
||
|
text_feats = F.normalize(text_feats, dim=-1) # B T P C
|
||
|
text_feats = text_feats.mean(dim=-2)
|
||
|
text_feats = F.normalize(text_feats, dim=-1) # B T C
|
||
|
text_feats = text_feats.unsqueeze(-1).unsqueeze(-1).repeat(
|
||
|
1, 1, 1, img_feats.shape[-2], img_feats.shape[-1]).transpose(1, 2)
|
||
|
return torch.cat((img_feats, text_feats), dim=1) # B 2C T H W
|
||
|
|
||
|
def correlation(self, img_feats, text_feats):
|
||
|
"""Correlation of image features and text features."""
|
||
|
img_feats = F.normalize(img_feats, dim=1) # B C H W
|
||
|
text_feats = F.normalize(text_feats, dim=-1) # B T P C
|
||
|
corr = torch.einsum('bchw, btpc -> bpthw', img_feats, text_feats)
|
||
|
return corr
|
||
|
|
||
|
def corr_embed(self, x):
|
||
|
"""Correlation embeddings encoding."""
|
||
|
B = x.shape[0]
|
||
|
corr_embed = x.permute(0, 2, 1, 3, 4).flatten(0, 1)
|
||
|
corr_embed = self.conv1(corr_embed)
|
||
|
corr_embed = corr_embed.reshape(B, -1, self.embed_dims, x.shape[-2],
|
||
|
x.shape[-1]).transpose(1, 2)
|
||
|
return corr_embed
|
||
|
|
||
|
def forward(self, inputs):
|
||
|
"""
|
||
|
Args:
|
||
|
inputs (dict): including the following keys,
|
||
|
'appearance_feat': list[torch.Tensor], w.r.t. out_indices of
|
||
|
`self.feature_extractor`.
|
||
|
'clip_text_feat': the text feature extracted by clip text
|
||
|
encoder.
|
||
|
'clip_text_feat_test': the text feature extracted by clip text
|
||
|
encoder for testing.
|
||
|
'clip_img_feat': the image feature extracted clip image
|
||
|
encoder.
|
||
|
"""
|
||
|
img_feats = inputs['clip_img_feat']
|
||
|
B = img_feats.size(0)
|
||
|
appearance_guidance = inputs[
|
||
|
'appearance_feat'][::-1] # order (out_indices) 2, 1, 0
|
||
|
text_feats = inputs['clip_text_feat'] if self.training else inputs[
|
||
|
'clip_text_feat_test']
|
||
|
text_feats = text_feats.repeat(B, 1, 1, 1)
|
||
|
|
||
|
corr = self.correlation(img_feats, text_feats)
|
||
|
# corr = self.feature_map(img_feats, text_feats)
|
||
|
corr_embed = self.corr_embed(corr)
|
||
|
|
||
|
projected_guidance, projected_text_guidance = None, None
|
||
|
|
||
|
if self.guidance_projection is not None:
|
||
|
projected_guidance = self.guidance_projection(
|
||
|
appearance_guidance[0])
|
||
|
|
||
|
if self.text_guidance_projection is not None:
|
||
|
text_feats = text_feats.mean(dim=-2)
|
||
|
text_feats = text_feats / text_feats.norm(dim=-1, keepdim=True)
|
||
|
projected_text_guidance = self.text_guidance_projection(text_feats)
|
||
|
|
||
|
for layer in self.layers:
|
||
|
corr_embed = layer(corr_embed, projected_guidance,
|
||
|
projected_text_guidance)
|
||
|
|
||
|
return dict(
|
||
|
corr_embed=corr_embed, appearance_feats=appearance_guidance[1:])
|