2021-08-17 14:16:55 +08:00
|
|
|
# Copyright (c) OpenMMLab. All rights reserved.
|
2021-08-13 13:31:19 +08:00
|
|
|
import argparse
|
2021-08-26 06:00:41 +08:00
|
|
|
import os.path as osp
|
2021-08-13 13:31:19 +08:00
|
|
|
from collections import OrderedDict
|
|
|
|
|
2021-08-26 06:00:41 +08:00
|
|
|
import mmcv
|
2021-08-13 13:31:19 +08:00
|
|
|
import torch
|
2021-08-26 06:00:41 +08:00
|
|
|
from mmcv.runner import CheckpointLoader
|
2021-08-13 13:31:19 +08:00
|
|
|
|
|
|
|
|
2021-08-18 09:42:42 +08:00
|
|
|
def convert_mit(ckpt):
|
2021-08-13 13:31:19 +08:00
|
|
|
new_ckpt = OrderedDict()
|
|
|
|
# Process the concat between q linear weights and kv linear weights
|
|
|
|
for k, v in ckpt.items():
|
|
|
|
if k.startswith('head'):
|
|
|
|
continue
|
2021-10-13 21:21:17 +08:00
|
|
|
# patch embedding conversion
|
2021-08-13 13:31:19 +08:00
|
|
|
elif k.startswith('patch_embed'):
|
|
|
|
stage_i = int(k.split('.')[0].replace('patch_embed', ''))
|
|
|
|
new_k = k.replace(f'patch_embed{stage_i}', f'layers.{stage_i-1}.0')
|
|
|
|
new_v = v
|
|
|
|
if 'proj.' in new_k:
|
|
|
|
new_k = new_k.replace('proj.', 'projection.')
|
2021-10-13 21:21:17 +08:00
|
|
|
# transformer encoder layer conversion
|
2021-08-13 13:31:19 +08:00
|
|
|
elif k.startswith('block'):
|
|
|
|
stage_i = int(k.split('.')[0].replace('block', ''))
|
|
|
|
new_k = k.replace(f'block{stage_i}', f'layers.{stage_i-1}.1')
|
|
|
|
new_v = v
|
|
|
|
if 'attn.q.' in new_k:
|
|
|
|
sub_item_k = k.replace('q.', 'kv.')
|
|
|
|
new_k = new_k.replace('q.', 'attn.in_proj_')
|
|
|
|
new_v = torch.cat([v, ckpt[sub_item_k]], dim=0)
|
|
|
|
elif 'attn.kv.' in new_k:
|
|
|
|
continue
|
|
|
|
elif 'attn.proj.' in new_k:
|
|
|
|
new_k = new_k.replace('proj.', 'attn.out_proj.')
|
|
|
|
elif 'attn.sr.' in new_k:
|
|
|
|
new_k = new_k.replace('sr.', 'sr.')
|
|
|
|
elif 'mlp.' in new_k:
|
|
|
|
string = f'{new_k}-'
|
|
|
|
new_k = new_k.replace('mlp.', 'ffn.layers.')
|
|
|
|
if 'fc1.weight' in new_k or 'fc2.weight' in new_k:
|
|
|
|
new_v = v.reshape((*v.shape, 1, 1))
|
|
|
|
new_k = new_k.replace('fc1.', '0.')
|
|
|
|
new_k = new_k.replace('dwconv.dwconv.', '1.')
|
|
|
|
new_k = new_k.replace('fc2.', '4.')
|
|
|
|
string += f'{new_k} {v.shape}-{new_v.shape}'
|
2021-10-13 21:21:17 +08:00
|
|
|
# norm layer conversion
|
2021-08-13 13:31:19 +08:00
|
|
|
elif k.startswith('norm'):
|
|
|
|
stage_i = int(k.split('.')[0].replace('norm', ''))
|
|
|
|
new_k = k.replace(f'norm{stage_i}', f'layers.{stage_i-1}.2')
|
|
|
|
new_v = v
|
|
|
|
else:
|
|
|
|
new_k = k
|
|
|
|
new_v = v
|
|
|
|
new_ckpt[new_k] = new_v
|
|
|
|
return new_ckpt
|
|
|
|
|
|
|
|
|
2021-08-26 06:00:41 +08:00
|
|
|
def main():
|
2021-08-13 13:31:19 +08:00
|
|
|
parser = argparse.ArgumentParser(
|
2021-08-26 06:00:41 +08:00
|
|
|
description='Convert keys in official pretrained segformer to '
|
|
|
|
'MMSegmentation style.')
|
|
|
|
parser.add_argument('src', help='src model path or url')
|
|
|
|
# The dst path must be a full path of the new checkpoint.
|
|
|
|
parser.add_argument('dst', help='save path')
|
|
|
|
args = parser.parse_args()
|
2021-08-13 13:31:19 +08:00
|
|
|
|
2021-08-26 06:00:41 +08:00
|
|
|
checkpoint = CheckpointLoader.load_checkpoint(args.src, map_location='cpu')
|
|
|
|
if 'state_dict' in checkpoint:
|
|
|
|
state_dict = checkpoint['state_dict']
|
|
|
|
elif 'model' in checkpoint:
|
|
|
|
state_dict = checkpoint['model']
|
|
|
|
else:
|
|
|
|
state_dict = checkpoint
|
|
|
|
weight = convert_mit(state_dict)
|
|
|
|
mmcv.mkdir_or_exist(osp.dirname(args.dst))
|
|
|
|
torch.save(weight, args.dst)
|
2021-08-13 13:31:19 +08:00
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
2021-08-26 06:00:41 +08:00
|
|
|
main()
|