mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
63 lines
2.4 KiB
Python
63 lines
2.4 KiB
Python
|
# Copyright (c) OpenMMLab. All rights reserved.
|
||
|
from typing import Optional
|
||
|
|
||
|
from mmengine.optim.scheduler import PolyLR
|
||
|
|
||
|
from mmseg.registry import PARAM_SCHEDULERS
|
||
|
|
||
|
|
||
|
@PARAM_SCHEDULERS.register_module()
|
||
|
class PolyLRRatio(PolyLR):
|
||
|
"""Implements polynomial learning rate decay with ratio.
|
||
|
|
||
|
This scheduler adjusts the learning rate of each parameter group
|
||
|
following a polynomial decay equation. The decay can occur in
|
||
|
conjunction with external parameter adjustments made outside this
|
||
|
scheduler.
|
||
|
|
||
|
Args:
|
||
|
optimizer (Optimizer or OptimWrapper): Wrapped optimizer.
|
||
|
eta_min (float): Minimum learning rate at the end of scheduling.
|
||
|
Defaults to 0.
|
||
|
eta_min_ratio (float, optional): The ratio of the minimum parameter
|
||
|
value to the base parameter value. Either `eta_min` or
|
||
|
`eta_min_ratio` should be specified. Defaults to None.
|
||
|
power (float): The power of the polynomial. Defaults to 1.0.
|
||
|
begin (int): Step at which to start updating the parameters.
|
||
|
Defaults to 0.
|
||
|
end (int): Step at which to stop updating the parameters.
|
||
|
Defaults to INF.
|
||
|
last_step (int): The index of last step. Used for resume without
|
||
|
state dict. Defaults to -1.
|
||
|
by_epoch (bool): Whether the scheduled parameters are updated by
|
||
|
epochs. Defaults to True.
|
||
|
verbose (bool): Whether to print the value for each update.
|
||
|
Defaults to False.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, eta_min_ratio: Optional[int] = None, *args, **kwargs):
|
||
|
super().__init__(*args, **kwargs)
|
||
|
|
||
|
self.eta_min_ratio = eta_min_ratio
|
||
|
|
||
|
def _get_value(self):
|
||
|
"""Compute value using chainable form of the scheduler."""
|
||
|
|
||
|
if self.last_step == 0:
|
||
|
return [
|
||
|
group[self.param_name] for group in self.optimizer.param_groups
|
||
|
]
|
||
|
|
||
|
param_groups_value = []
|
||
|
for base_value, param_group in zip(self.base_values,
|
||
|
self.optimizer.param_groups):
|
||
|
eta_min = self.eta_min if self.eta_min_ratio is None else \
|
||
|
base_value * self.eta_min_ratio
|
||
|
step_ratio = (1 - 1 /
|
||
|
(self.total_iters - self.last_step + 1))**self.power
|
||
|
step_value = (param_group[self.param_name] -
|
||
|
eta_min) * step_ratio + eta_min
|
||
|
param_groups_value.append(step_value)
|
||
|
|
||
|
return param_groups_value
|