13 lines
468 B
Python
Raw Normal View History

# Copyright (c) OpenMMLab. All rights reserved.
from .base import BaseSegmentor
2020-07-07 20:52:19 +08:00
from .cascade_encoder_decoder import CascadeEncoderDecoder
[Feature] Support VPD Depth Estimator (#3321) Thanks for your contribution and we appreciate it a lot. The following instructions would make your pull request more healthy and more easily get feedback. If you do not understand some items, don't worry, just make the pull request and seek help from maintainers. ## Motivation Support depth estimation algorithm [VPD](https://github.com/wl-zhao/VPD) ## Modification 1. add VPD backbone 2. add VPD decoder head for depth estimation 3. add a new segmentor `DepthEstimator` based on `EncoderDecoder` for depth estimation 4. add an integrated metric that calculate common metrics in depth estimation 5. add SiLog loss for depth estimation 6. add config for VPD ## BC-breaking (Optional) Does the modification introduce changes that break the backward-compatibility of the downstream repos? If so, please describe how it breaks the compatibility and how the downstream projects should modify their code to keep compatibility with this PR. ## Use cases (Optional) If this PR introduces a new feature, it is better to list some use cases here, and update the documentation. ## Checklist 1. Pre-commit or other linting tools are used to fix the potential lint issues. 7. The modification is covered by complete unit tests. If not, please add more unit test to ensure the correctness. 8. If the modification has potential influence on downstream projects, this PR should be tested with downstream projects, like MMDet or MMDet3D. 9. The documentation has been modified accordingly, like docstring or example tutorials.
2023-09-13 15:31:22 +08:00
from .depth_estimator import DepthEstimator
2020-07-07 20:52:19 +08:00
from .encoder_decoder import EncoderDecoder
[Feature] Support Side Adapter Network (#3232) ## Motivation Support SAN for Open-Vocabulary Semantic Segmentation Paper: [Side Adapter Network for Open-Vocabulary Semantic Segmentation](https://arxiv.org/abs/2302.12242) official Code: [SAN](https://github.com/MendelXu/SAN) ## Modification - Added the parameters of backbone vit for implementing the image encoder of CLIP. - Added text encoder code. - Added segmentor multimodel encoder-decoder code for open-vocabulary semantic segmentation. - Added SideAdapterNetwork decode head code. - Added config files for train and inference. - Added tools for converting pretrained models. - Added loss implementation for mask classification model, such as SAN, Maskformer and remove dependency on mmdetection. - Added test units for text encoder, multimodel encoder-decoder, san decode head and hungarian_assigner. ## Use cases ### Convert Models **pretrained SAN model** The official pretrained model can be downloaded from [san_clip_vit_b_16.pth](https://huggingface.co/Mendel192/san/blob/main/san_vit_b_16.pth) and [san_clip_vit_large_14.pth](https://huggingface.co/Mendel192/san/blob/main/san_vit_large_14.pth). Use tools/model_converters/san2mmseg.py to convert offcial model into mmseg style. `python tools/model_converters/san2mmseg.py <MODEL_PATH> <OUTPUT_PATH>` **pretrained CLIP model** Use the CLIP model provided by openai to train SAN. The CLIP model can be download from [ViT-B-16.pt](https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt) and [ViT-L-14-336px.pt](https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt). Use tools/model_converters/clip2mmseg.py to convert model into mmseg style. `python tools/model_converters/clip2mmseg.py <MODEL_PATH> <OUTPUT_PATH>` ### Inference test san_vit-base-16 model on coco-stuff164k dataset `python tools/test.py ./configs/san/san-vit-b16_coco-stuff164k-640x640.py <TRAINED_MODEL_PATH>` ### Train test san_vit-base-16 model on coco-stuff164k dataset `python tools/train.py ./configs/san/san-vit-b16_coco-stuff164k-640x640.py --cfg-options model.pretrained=<PRETRAINED_MODEL_PATH>` ## Comparision Results ### Train on COCO-Stuff164k | | | mIoU | mAcc | pAcc | | --------------- | ----- | ----- | ----- | ----- | | san-vit-base16 | official | 41.93 | 56.73 | 67.69 | | | mmseg | 41.93 | 56.84 | 67.84 | | san-vit-large14 | official | 45.57 | 59.52 | 69.76 | | | mmseg | 45.78 | 59.61 | 69.21 | ### Evaluate on Pascal Context | | | mIoU | mAcc | pAcc | | --------------- | ----- | ----- | ----- | ----- | | san-vit-base16 | official | 54.05 | 72.96 | 77.77 | | | mmseg | 54.04 | 73.74 | 77.71 | | san-vit-large14 | official | 57.53 | 77.56 | 78.89 | | | mmseg | 56.89 | 76.96 | 78.74 | ### Evaluate on Voc12Aug | | | mIoU | mAcc | pAcc | | --------------- | ----- | ----- | ----- | ----- | | san-vit-base16 | official | 93.86 | 96.61 | 97.11 | | | mmseg | 94.58 | 97.01 | 97.38 | | san-vit-large14 | official | 95.17 | 97.61 | 97.63 | | | mmseg | 95.58 | 97.75 | 97.79 | --------- Co-authored-by: CastleDream <35064479+CastleDream@users.noreply.github.com> Co-authored-by: yeedrag <46050186+yeedrag@users.noreply.github.com> Co-authored-by: Yang-ChangHui <71805205+Yang-Changhui@users.noreply.github.com> Co-authored-by: Xu CAO <49406546+SheffieldCao@users.noreply.github.com> Co-authored-by: xiexinch <xiexinch@outlook.com> Co-authored-by: 小飞猪 <106524776+ooooo-create@users.noreply.github.com>
2023-09-20 21:20:26 +08:00
from .multimodal_encoder_decoder import MultimodalEncoderDecoder
from .seg_tta import SegTTAModel
2020-07-07 20:52:19 +08:00
__all__ = [
[Feature] Support VPD Depth Estimator (#3321) Thanks for your contribution and we appreciate it a lot. The following instructions would make your pull request more healthy and more easily get feedback. If you do not understand some items, don't worry, just make the pull request and seek help from maintainers. ## Motivation Support depth estimation algorithm [VPD](https://github.com/wl-zhao/VPD) ## Modification 1. add VPD backbone 2. add VPD decoder head for depth estimation 3. add a new segmentor `DepthEstimator` based on `EncoderDecoder` for depth estimation 4. add an integrated metric that calculate common metrics in depth estimation 5. add SiLog loss for depth estimation 6. add config for VPD ## BC-breaking (Optional) Does the modification introduce changes that break the backward-compatibility of the downstream repos? If so, please describe how it breaks the compatibility and how the downstream projects should modify their code to keep compatibility with this PR. ## Use cases (Optional) If this PR introduces a new feature, it is better to list some use cases here, and update the documentation. ## Checklist 1. Pre-commit or other linting tools are used to fix the potential lint issues. 7. The modification is covered by complete unit tests. If not, please add more unit test to ensure the correctness. 8. If the modification has potential influence on downstream projects, this PR should be tested with downstream projects, like MMDet or MMDet3D. 9. The documentation has been modified accordingly, like docstring or example tutorials.
2023-09-13 15:31:22 +08:00
'BaseSegmentor', 'EncoderDecoder', 'CascadeEncoderDecoder', 'SegTTAModel',
[Feature] Support Side Adapter Network (#3232) ## Motivation Support SAN for Open-Vocabulary Semantic Segmentation Paper: [Side Adapter Network for Open-Vocabulary Semantic Segmentation](https://arxiv.org/abs/2302.12242) official Code: [SAN](https://github.com/MendelXu/SAN) ## Modification - Added the parameters of backbone vit for implementing the image encoder of CLIP. - Added text encoder code. - Added segmentor multimodel encoder-decoder code for open-vocabulary semantic segmentation. - Added SideAdapterNetwork decode head code. - Added config files for train and inference. - Added tools for converting pretrained models. - Added loss implementation for mask classification model, such as SAN, Maskformer and remove dependency on mmdetection. - Added test units for text encoder, multimodel encoder-decoder, san decode head and hungarian_assigner. ## Use cases ### Convert Models **pretrained SAN model** The official pretrained model can be downloaded from [san_clip_vit_b_16.pth](https://huggingface.co/Mendel192/san/blob/main/san_vit_b_16.pth) and [san_clip_vit_large_14.pth](https://huggingface.co/Mendel192/san/blob/main/san_vit_large_14.pth). Use tools/model_converters/san2mmseg.py to convert offcial model into mmseg style. `python tools/model_converters/san2mmseg.py <MODEL_PATH> <OUTPUT_PATH>` **pretrained CLIP model** Use the CLIP model provided by openai to train SAN. The CLIP model can be download from [ViT-B-16.pt](https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt) and [ViT-L-14-336px.pt](https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt). Use tools/model_converters/clip2mmseg.py to convert model into mmseg style. `python tools/model_converters/clip2mmseg.py <MODEL_PATH> <OUTPUT_PATH>` ### Inference test san_vit-base-16 model on coco-stuff164k dataset `python tools/test.py ./configs/san/san-vit-b16_coco-stuff164k-640x640.py <TRAINED_MODEL_PATH>` ### Train test san_vit-base-16 model on coco-stuff164k dataset `python tools/train.py ./configs/san/san-vit-b16_coco-stuff164k-640x640.py --cfg-options model.pretrained=<PRETRAINED_MODEL_PATH>` ## Comparision Results ### Train on COCO-Stuff164k | | | mIoU | mAcc | pAcc | | --------------- | ----- | ----- | ----- | ----- | | san-vit-base16 | official | 41.93 | 56.73 | 67.69 | | | mmseg | 41.93 | 56.84 | 67.84 | | san-vit-large14 | official | 45.57 | 59.52 | 69.76 | | | mmseg | 45.78 | 59.61 | 69.21 | ### Evaluate on Pascal Context | | | mIoU | mAcc | pAcc | | --------------- | ----- | ----- | ----- | ----- | | san-vit-base16 | official | 54.05 | 72.96 | 77.77 | | | mmseg | 54.04 | 73.74 | 77.71 | | san-vit-large14 | official | 57.53 | 77.56 | 78.89 | | | mmseg | 56.89 | 76.96 | 78.74 | ### Evaluate on Voc12Aug | | | mIoU | mAcc | pAcc | | --------------- | ----- | ----- | ----- | ----- | | san-vit-base16 | official | 93.86 | 96.61 | 97.11 | | | mmseg | 94.58 | 97.01 | 97.38 | | san-vit-large14 | official | 95.17 | 97.61 | 97.63 | | | mmseg | 95.58 | 97.75 | 97.79 | --------- Co-authored-by: CastleDream <35064479+CastleDream@users.noreply.github.com> Co-authored-by: yeedrag <46050186+yeedrag@users.noreply.github.com> Co-authored-by: Yang-ChangHui <71805205+Yang-Changhui@users.noreply.github.com> Co-authored-by: Xu CAO <49406546+SheffieldCao@users.noreply.github.com> Co-authored-by: xiexinch <xiexinch@outlook.com> Co-authored-by: 小飞猪 <106524776+ooooo-create@users.noreply.github.com>
2023-09-20 21:20:26 +08:00
'MultimodalEncoderDecoder', 'DepthEstimator'
]