mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
89 lines
3.8 KiB
Python
89 lines
3.8 KiB
Python
|
# Copyright (c) OpenMMLab. All rights reserved.
|
||
|
import torch
|
||
|
from mmcv.ops import point_sample
|
||
|
from torch import Tensor
|
||
|
|
||
|
|
||
|
def get_uncertainty(mask_preds: Tensor, labels: Tensor) -> Tensor:
|
||
|
"""Estimate uncertainty based on pred logits.
|
||
|
|
||
|
We estimate uncertainty as L1 distance between 0.0 and the logits
|
||
|
prediction in 'mask_preds' for the foreground class in `classes`.
|
||
|
|
||
|
Args:
|
||
|
mask_preds (Tensor): mask predication logits, shape (num_rois,
|
||
|
num_classes, mask_height, mask_width).
|
||
|
|
||
|
labels (Tensor): Either predicted or ground truth label for
|
||
|
each predicted mask, of length num_rois.
|
||
|
|
||
|
Returns:
|
||
|
scores (Tensor): Uncertainty scores with the most uncertain
|
||
|
locations having the highest uncertainty score,
|
||
|
shape (num_rois, 1, mask_height, mask_width)
|
||
|
"""
|
||
|
if mask_preds.shape[1] == 1:
|
||
|
gt_class_logits = mask_preds.clone()
|
||
|
else:
|
||
|
inds = torch.arange(mask_preds.shape[0], device=mask_preds.device)
|
||
|
gt_class_logits = mask_preds[inds, labels].unsqueeze(1)
|
||
|
return -torch.abs(gt_class_logits)
|
||
|
|
||
|
|
||
|
def get_uncertain_point_coords_with_randomness(
|
||
|
mask_preds: Tensor, labels: Tensor, num_points: int,
|
||
|
oversample_ratio: float, importance_sample_ratio: float) -> Tensor:
|
||
|
"""Get ``num_points`` most uncertain points with random points during
|
||
|
train.
|
||
|
|
||
|
Sample points in [0, 1] x [0, 1] coordinate space based on their
|
||
|
uncertainty. The uncertainties are calculated for each point using
|
||
|
'get_uncertainty()' function that takes point's logit prediction as
|
||
|
input.
|
||
|
|
||
|
Args:
|
||
|
mask_preds (Tensor): A tensor of shape (num_rois, num_classes,
|
||
|
mask_height, mask_width) for class-specific or class-agnostic
|
||
|
prediction.
|
||
|
labels (Tensor): The ground truth class for each instance.
|
||
|
num_points (int): The number of points to sample.
|
||
|
oversample_ratio (float): Oversampling parameter.
|
||
|
importance_sample_ratio (float): Ratio of points that are sampled
|
||
|
via importnace sampling.
|
||
|
|
||
|
Returns:
|
||
|
point_coords (Tensor): A tensor of shape (num_rois, num_points, 2)
|
||
|
that contains the coordinates sampled points.
|
||
|
"""
|
||
|
assert oversample_ratio >= 1
|
||
|
assert 0 <= importance_sample_ratio <= 1
|
||
|
batch_size = mask_preds.shape[0]
|
||
|
num_sampled = int(num_points * oversample_ratio)
|
||
|
point_coords = torch.rand(
|
||
|
batch_size, num_sampled, 2, device=mask_preds.device)
|
||
|
point_logits = point_sample(mask_preds, point_coords)
|
||
|
# It is crucial to calculate uncertainty based on the sampled
|
||
|
# prediction value for the points. Calculating uncertainties of the
|
||
|
# coarse predictions first and sampling them for points leads to
|
||
|
# incorrect results. To illustrate this: assume uncertainty func(
|
||
|
# logits)=-abs(logits), a sampled point between two coarse
|
||
|
# predictions with -1 and 1 logits has 0 logits, and therefore 0
|
||
|
# uncertainty value. However, if we calculate uncertainties for the
|
||
|
# coarse predictions first, both will have -1 uncertainty,
|
||
|
# and sampled point will get -1 uncertainty.
|
||
|
point_uncertainties = get_uncertainty(point_logits, labels)
|
||
|
num_uncertain_points = int(importance_sample_ratio * num_points)
|
||
|
num_random_points = num_points - num_uncertain_points
|
||
|
idx = torch.topk(
|
||
|
point_uncertainties[:, 0, :], k=num_uncertain_points, dim=1)[1]
|
||
|
shift = num_sampled * torch.arange(
|
||
|
batch_size, dtype=torch.long, device=mask_preds.device)
|
||
|
idx += shift[:, None]
|
||
|
point_coords = point_coords.view(-1, 2)[idx.view(-1), :].view(
|
||
|
batch_size, num_uncertain_points, 2)
|
||
|
if num_random_points > 0:
|
||
|
rand_roi_coords = torch.rand(
|
||
|
batch_size, num_random_points, 2, device=mask_preds.device)
|
||
|
point_coords = torch.cat((point_coords, rand_roi_coords), dim=1)
|
||
|
return point_coords
|