mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
241 lines
7.7 KiB
Python
241 lines
7.7 KiB
Python
|
# Copyright (c) OpenMMLab. All rights reserved.
|
||
|
"""CLIP tokenizer.
|
||
|
|
||
|
Copied from https://github.com/openai/CLIP. Originally MIT License, Copyright
|
||
|
(c) 2021 OpenAI.
|
||
|
"""
|
||
|
import gzip
|
||
|
import html
|
||
|
import os
|
||
|
from functools import lru_cache
|
||
|
from typing import List, Union
|
||
|
|
||
|
import ftfy
|
||
|
import regex as re
|
||
|
import torch
|
||
|
|
||
|
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
|
||
|
|
||
|
|
||
|
@lru_cache()
|
||
|
def default_bpe():
|
||
|
return os.path.join(
|
||
|
os.path.dirname(os.path.abspath(__file__)),
|
||
|
'bpe_simple_vocab_16e6.txt.gz')
|
||
|
|
||
|
|
||
|
@lru_cache()
|
||
|
def bytes_to_unicode():
|
||
|
"""Returns list of utf-8 byte and a corresponding list of unicode strings.
|
||
|
|
||
|
The reversible bpe codes work on unicode strings. This means you need a
|
||
|
large # of unicode characters in your vocab if you want to avoid UNKs. When
|
||
|
you're at something like a 10B token dataset you end up needing around 5K
|
||
|
for decent coverage. This is a significant percentage of your normal, say,
|
||
|
32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and
|
||
|
unicode strings. And avoids mapping to whitespace/control characters the
|
||
|
bpe code barfs on.
|
||
|
"""
|
||
|
bs = list(range(ord('!'),
|
||
|
ord('~') + 1)) + list(range(
|
||
|
ord('¡'),
|
||
|
ord('¬') + 1)) + list(range(ord('®'),
|
||
|
ord('ÿ') + 1))
|
||
|
cs = bs[:]
|
||
|
n = 0
|
||
|
for b in range(2**8):
|
||
|
if b not in bs:
|
||
|
bs.append(b)
|
||
|
cs.append(2**8 + n)
|
||
|
n += 1
|
||
|
cs = [chr(n) for n in cs]
|
||
|
return dict(zip(bs, cs))
|
||
|
|
||
|
|
||
|
def get_pairs(word):
|
||
|
"""Return set of symbol pairs in a word.
|
||
|
|
||
|
Word is represented as tuple of symbols (symbols being variable-length
|
||
|
strings).
|
||
|
"""
|
||
|
pairs = set()
|
||
|
prev_char = word[0]
|
||
|
for char in word[1:]:
|
||
|
pairs.add((prev_char, char))
|
||
|
prev_char = char
|
||
|
return pairs
|
||
|
|
||
|
|
||
|
def basic_clean(text):
|
||
|
text = ftfy.fix_text(text)
|
||
|
text = html.unescape(html.unescape(text))
|
||
|
return text.strip()
|
||
|
|
||
|
|
||
|
def whitespace_clean(text):
|
||
|
text = re.sub(r'\s+', ' ', text)
|
||
|
text = text.strip()
|
||
|
return text
|
||
|
|
||
|
|
||
|
class SimpleTokenizer:
|
||
|
|
||
|
def __init__(self, bpe_path: str = default_bpe(), special_tokens=None):
|
||
|
self.byte_encoder = bytes_to_unicode()
|
||
|
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
||
|
merges = gzip.open(bpe_path).read().decode('utf-8').split('\n')
|
||
|
merges = merges[1:49152 - 256 - 2 + 1]
|
||
|
merges = [tuple(merge.split()) for merge in merges]
|
||
|
vocab = list(bytes_to_unicode().values())
|
||
|
vocab = vocab + [v + '</w>' for v in vocab]
|
||
|
for merge in merges:
|
||
|
vocab.append(''.join(merge))
|
||
|
if not special_tokens:
|
||
|
special_tokens = ['<start_of_text>', '<end_of_text>']
|
||
|
else:
|
||
|
special_tokens = ['<start_of_text>', '<end_of_text>'
|
||
|
] + special_tokens
|
||
|
vocab.extend(special_tokens)
|
||
|
self.encoder = dict(zip(vocab, range(len(vocab))))
|
||
|
self.decoder = {v: k for k, v in self.encoder.items()}
|
||
|
self.bpe_ranks = dict(zip(merges, range(len(merges))))
|
||
|
self.cache = {t: t for t in special_tokens}
|
||
|
special = '|'.join(special_tokens)
|
||
|
self.pat = re.compile(
|
||
|
special +
|
||
|
r"""|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""",
|
||
|
re.IGNORECASE)
|
||
|
|
||
|
self.vocab_size = len(self.encoder)
|
||
|
self.all_special_ids = [self.encoder[t] for t in special_tokens]
|
||
|
|
||
|
def bpe(self, token):
|
||
|
if token in self.cache:
|
||
|
return self.cache[token]
|
||
|
word = tuple(token[:-1]) + (token[-1] + '</w>', )
|
||
|
pairs = get_pairs(word)
|
||
|
|
||
|
if not pairs:
|
||
|
return token + '</w>'
|
||
|
|
||
|
while True:
|
||
|
bigram = min(
|
||
|
pairs, key=lambda pair: self.bpe_ranks.get(pair, float('inf')))
|
||
|
if bigram not in self.bpe_ranks:
|
||
|
break
|
||
|
first, second = bigram
|
||
|
new_word = []
|
||
|
i = 0
|
||
|
while i < len(word):
|
||
|
try:
|
||
|
j = word.index(first, i)
|
||
|
new_word.extend(word[i:j])
|
||
|
i = j
|
||
|
except: # noqa: E722, E261
|
||
|
new_word.extend(word[i:])
|
||
|
break
|
||
|
|
||
|
if word[i] == first and i < len(word) - 1 and word[
|
||
|
i + 1] == second:
|
||
|
new_word.append(first + second)
|
||
|
i += 2
|
||
|
else:
|
||
|
new_word.append(word[i])
|
||
|
i += 1
|
||
|
new_word = tuple(new_word)
|
||
|
word = new_word
|
||
|
if len(word) == 1:
|
||
|
break
|
||
|
else:
|
||
|
pairs = get_pairs(word)
|
||
|
word = ' '.join(word)
|
||
|
self.cache[token] = word
|
||
|
return word
|
||
|
|
||
|
def encode(self, text):
|
||
|
bpe_tokens = []
|
||
|
text = whitespace_clean(basic_clean(text)).lower()
|
||
|
for token in re.findall(self.pat, text):
|
||
|
token = ''.join(self.byte_encoder[b]
|
||
|
for b in token.encode('utf-8'))
|
||
|
bpe_tokens.extend(self.encoder[bpe_token]
|
||
|
for bpe_token in self.bpe(token).split(' '))
|
||
|
return bpe_tokens
|
||
|
|
||
|
def decode(self, tokens):
|
||
|
text = ''.join([self.decoder[token] for token in tokens])
|
||
|
text = bytearray([self.byte_decoder[c] for c in text]).decode(
|
||
|
'utf-8', errors='replace').replace('</w>', ' ')
|
||
|
return text
|
||
|
|
||
|
|
||
|
_tokenizer = SimpleTokenizer()
|
||
|
|
||
|
|
||
|
def decode(output_ids: torch.Tensor):
|
||
|
output_ids = output_ids.cpu().numpy()
|
||
|
return _tokenizer.decode(output_ids)
|
||
|
|
||
|
|
||
|
def tokenize(texts: Union[str, List[str]],
|
||
|
context_length: int = 77) -> torch.LongTensor:
|
||
|
"""Returns the tokenized representation of given input string(s)
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
texts : Union[str, List[str]]
|
||
|
An input string or a list of input strings to tokenize
|
||
|
context_length : int
|
||
|
The context length to use; all CLIP models use 77 as the context length
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
A two-dimensional tensor containing the resulting tokens,
|
||
|
shape = [number of input strings, context_length]
|
||
|
"""
|
||
|
if isinstance(texts, str):
|
||
|
texts = [texts]
|
||
|
|
||
|
sot_token = _tokenizer.encoder['<start_of_text>']
|
||
|
eot_token = _tokenizer.encoder['<end_of_text>']
|
||
|
all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token]
|
||
|
for text in texts]
|
||
|
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
|
||
|
|
||
|
for i, tokens in enumerate(all_tokens):
|
||
|
if len(tokens) > context_length:
|
||
|
tokens = tokens[:context_length] # Truncate
|
||
|
tokens[-1] = eot_token
|
||
|
result[i, :len(tokens)] = torch.tensor(tokens)
|
||
|
|
||
|
return result
|
||
|
|
||
|
|
||
|
class HFTokenizer:
|
||
|
"""HuggingFace tokenizer wrapper."""
|
||
|
|
||
|
def __init__(self, tokenizer_name: str):
|
||
|
from transformers import AutoTokenizer
|
||
|
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
|
||
|
|
||
|
def save_pretrained(self, dest):
|
||
|
self.tokenizer.save_pretrained(dest)
|
||
|
|
||
|
def __call__(self,
|
||
|
texts: Union[str, List[str]],
|
||
|
context_length: int = 77) -> torch.Tensor:
|
||
|
# same cleaning as for default tokenizer, except lowercasing
|
||
|
# adding lower (for case-sensitive tokenizers) will make it
|
||
|
# more robust but less sensitive to nuance
|
||
|
if isinstance(texts, str):
|
||
|
texts = [texts]
|
||
|
texts = [whitespace_clean(basic_clean(text)) for text in texts]
|
||
|
input_ids = self.tokenizer(
|
||
|
texts,
|
||
|
return_tensors='pt',
|
||
|
max_length=context_length,
|
||
|
padding='max_length',
|
||
|
truncation=True,
|
||
|
).input_ids
|
||
|
return input_ids
|