mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
86 lines
2.8 KiB
Python
86 lines
2.8 KiB
Python
|
# Copyright (c) OpenMMLab. All rights reserved.
|
||
|
import os.path as osp
|
||
|
import shutil
|
||
|
from unittest import TestCase
|
||
|
|
||
|
import torch
|
||
|
from mmengine.structures import PixelData
|
||
|
|
||
|
from mmseg.evaluation import DepthMetric
|
||
|
from mmseg.structures import SegDataSample
|
||
|
|
||
|
|
||
|
class TestDepthMetric(TestCase):
|
||
|
|
||
|
def _demo_mm_inputs(self,
|
||
|
batch_size=2,
|
||
|
image_shapes=(3, 64, 64),
|
||
|
num_classes=5):
|
||
|
"""Create a superset of inputs needed to run test or train batches.
|
||
|
|
||
|
Args:
|
||
|
batch_size (int): batch size. Default to 2.
|
||
|
image_shapes (List[tuple], Optional): image shape.
|
||
|
Default to (3, 64, 64)
|
||
|
num_classes (int): number of different classes.
|
||
|
Default to 5.
|
||
|
"""
|
||
|
if isinstance(image_shapes, list):
|
||
|
assert len(image_shapes) == batch_size
|
||
|
else:
|
||
|
image_shapes = [image_shapes] * batch_size
|
||
|
|
||
|
data_samples = []
|
||
|
for idx in range(batch_size):
|
||
|
image_shape = image_shapes[idx]
|
||
|
_, h, w = image_shape
|
||
|
|
||
|
data_sample = SegDataSample()
|
||
|
gt_depth_map = torch.rand((1, h, w)) * 10
|
||
|
data_sample.gt_depth_map = PixelData(data=gt_depth_map)
|
||
|
|
||
|
data_samples.append(data_sample.to_dict())
|
||
|
|
||
|
return data_samples
|
||
|
|
||
|
def _demo_mm_model_output(self,
|
||
|
data_samples,
|
||
|
batch_size=2,
|
||
|
image_shapes=(3, 64, 64),
|
||
|
num_classes=5):
|
||
|
|
||
|
_, h, w = image_shapes
|
||
|
|
||
|
for data_sample in data_samples:
|
||
|
data_sample['pred_depth_map'] = dict(data=torch.randn(1, h, w))
|
||
|
|
||
|
data_sample[
|
||
|
'img_path'] = 'tests/data/pseudo_dataset/imgs/00000_img.jpg'
|
||
|
return data_samples
|
||
|
|
||
|
def test_evaluate(self):
|
||
|
"""Test using the metric in the same way as Evalutor."""
|
||
|
|
||
|
data_samples = self._demo_mm_inputs()
|
||
|
data_samples = self._demo_mm_model_output(data_samples)
|
||
|
|
||
|
depth_metric = DepthMetric()
|
||
|
depth_metric.process([0] * len(data_samples), data_samples)
|
||
|
res = depth_metric.compute_metrics(depth_metric.results)
|
||
|
self.assertIsInstance(res, dict)
|
||
|
|
||
|
# test save depth map file in output_dir
|
||
|
depth_metric = DepthMetric(output_dir='tmp')
|
||
|
depth_metric.process([0] * len(data_samples), data_samples)
|
||
|
assert osp.exists('tmp')
|
||
|
assert osp.isfile('tmp/00000_img.png')
|
||
|
shutil.rmtree('tmp')
|
||
|
|
||
|
# test format_only
|
||
|
depth_metric = DepthMetric(output_dir='tmp', format_only=True)
|
||
|
depth_metric.process([0] * len(data_samples), data_samples)
|
||
|
assert depth_metric.results == []
|
||
|
assert osp.exists('tmp')
|
||
|
assert osp.isfile('tmp/00000_img.png')
|
||
|
shutil.rmtree('tmp')
|