mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
58 lines
2.5 KiB
Markdown
58 lines
2.5 KiB
Markdown
|
# ISNet
|
||
|
|
||
|
[ISNet: Integrate Image-Level and Semantic-Level Context for Semantic Segmentation](https://arxiv.org/pdf/2108.12382.pdf)
|
||
|
|
||
|
## Description
|
||
|
|
||
|
This is an implementation of [ISNet](https://arxiv.org/pdf/2108.12382.pdf).
|
||
|
[Official Repo](https://github.com/SegmentationBLWX/sssegmentation)
|
||
|
|
||
|
## Usage
|
||
|
|
||
|
### Prerequisites
|
||
|
|
||
|
- Python 3.7
|
||
|
- PyTorch 1.6 or higher
|
||
|
- [MIM](https://github.com/open-mmlab/mim) v0.33 or higher
|
||
|
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation) v1.0.0rc2 or higher
|
||
|
|
||
|
All the commands below rely on the correct configuration of `PYTHONPATH`, which should point to the project's directory so that Python can locate the module files. In `isnet/` root directory, run the following line to add the current directory to `PYTHONPATH`:
|
||
|
|
||
|
```shell
|
||
|
export PYTHONPATH=`pwd`:$PYTHONPATH
|
||
|
```
|
||
|
|
||
|
### Training commands
|
||
|
|
||
|
```shell
|
||
|
mim train mmsegmentation configs/isnet_r50-d8_8xb2-160k_cityscapes-512x1024.py --work-dir work_dirs/isnet
|
||
|
```
|
||
|
|
||
|
To train on multiple GPUs, e.g. 8 GPUs, run the following command:
|
||
|
|
||
|
```shell
|
||
|
mim train mmsegmentation configs/isnet_r50-d8_8xb2-160k_cityscapes-512x1024.py --work-dir work_dirs/isnet --launcher pytorch --gpus 8
|
||
|
```
|
||
|
|
||
|
### Testing commands
|
||
|
|
||
|
```shell
|
||
|
mim test mmsegmentation configs/isnet_r50-d8_8xb2-160k_cityscapes-512x1024.py --work-dir work_dirs/isnet --checkpoint ${CHECKPOINT_PATH}
|
||
|
```
|
||
|
|
||
|
| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download |
|
||
|
| ------ | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | --------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------ |
|
||
|
| ISNet | R-50-D8 | 512x1024 | - | - | - | 79.32 | 80.88 | [config](configs/isnet_r50-d8_8xb2-160k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isnet/isnet_r50-d8_cityscapes-512x1024_20230104-a7a8ccf2.pth) |
|
||
|
|
||
|
## Citation
|
||
|
|
||
|
```bibtex
|
||
|
@article{Jin2021ISNetII,
|
||
|
title={ISNet: Integrate Image-Level and Semantic-Level Context for Semantic Segmentation},
|
||
|
author={Zhenchao Jin and B. Liu and Qi Chu and Nenghai Yu},
|
||
|
journal={2021 IEEE/CVF International Conference on Computer Vision (ICCV)},
|
||
|
year={2021},
|
||
|
pages={7169-7178}
|
||
|
}
|
||
|
```
|