57 lines
1.6 KiB
Python
Raw Normal View History

# model settings
norm_cfg = dict(type='SyncBN', requires_grad=True, momentum=0.01)
model = dict(
type='EncoderDecoder',
backbone=dict(
type='FastSCNN',
downsample_dw_channels1=32,
downsample_dw_channels2=48,
global_in_channels=64,
global_block_channels=(64, 96, 128),
global_out_channels=128,
higher_in_channels=64,
lower_in_channels=128,
fusion_out_channels=128,
scale_factor=4,
out_indices=(0, 1, 2),
norm_cfg=norm_cfg,
align_corners=False),
decode_head=dict(
type='SepFCNHead',
in_channels=128,
channels=128,
concat_input=False,
num_classes=19,
in_index=-1,
norm_cfg=norm_cfg,
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.)),
auxiliary_head=[
dict(
type='FCNHead',
in_channels=128,
channels=32,
num_convs=1,
num_classes=19,
in_index=-2,
norm_cfg=norm_cfg,
concat_input=False,
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
dict(
type='FCNHead',
in_channels=64,
channels=32,
num_convs=1,
num_classes=19,
in_index=-3,
norm_cfg=norm_cfg,
concat_input=False,
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
])
total_iters = 10000