mmsegmentation/configs/encnet/encnet.yml

224 lines
7.1 KiB
YAML
Raw Normal View History

Collections:
- Metadata:
Training Data:
- Cityscapes
- ADE20K
Name: encnet
Models:
- Config: configs/encnet/encnet_r50-d8_512x1024_40k_cityscapes.py
In Collection: encnet
Metadata:
backbone: R-50-D8
crop size: (512,1024)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (512,1024)
value: 218.34
lr schd: 40000
memory (GB): 8.6
Name: encnet_r50-d8_512x1024_40k_cityscapes
Results:
Dataset: Cityscapes
Metrics:
mIoU: 75.67
mIoU(ms+flip): 77.08
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x1024_40k_cityscapes/encnet_r50-d8_512x1024_40k_cityscapes_20200621_220958-68638a47.pth
- Config: configs/encnet/encnet_r101-d8_512x1024_40k_cityscapes.py
In Collection: encnet
Metadata:
backbone: R-101-D8
crop size: (512,1024)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (512,1024)
value: 375.94
lr schd: 40000
memory (GB): 12.1
Name: encnet_r101-d8_512x1024_40k_cityscapes
Results:
Dataset: Cityscapes
Metrics:
mIoU: 75.81
mIoU(ms+flip): 77.21
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x1024_40k_cityscapes/encnet_r101-d8_512x1024_40k_cityscapes_20200621_220933-35e0a3e8.pth
- Config: configs/encnet/encnet_r50-d8_769x769_40k_cityscapes.py
In Collection: encnet
Metadata:
backbone: R-50-D8
crop size: (769,769)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (769,769)
value: 549.45
lr schd: 40000
memory (GB): 9.8
Name: encnet_r50-d8_769x769_40k_cityscapes
Results:
Dataset: Cityscapes
Metrics:
mIoU: 76.24
mIoU(ms+flip): 77.85
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_769x769_40k_cityscapes/encnet_r50-d8_769x769_40k_cityscapes_20200621_220958-3bcd2884.pth
- Config: configs/encnet/encnet_r101-d8_769x769_40k_cityscapes.py
In Collection: encnet
Metadata:
backbone: R-101-D8
crop size: (769,769)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (769,769)
value: 793.65
lr schd: 40000
memory (GB): 13.7
Name: encnet_r101-d8_769x769_40k_cityscapes
Results:
Dataset: Cityscapes
Metrics:
mIoU: 74.25
mIoU(ms+flip): 76.25
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_769x769_40k_cityscapes/encnet_r101-d8_769x769_40k_cityscapes_20200621_220933-2fafed55.pth
- Config: configs/encnet/encnet_r50-d8_512x1024_80k_cityscapes.py
In Collection: encnet
Metadata:
backbone: R-50-D8
crop size: (512,1024)
lr schd: 80000
Name: encnet_r50-d8_512x1024_80k_cityscapes
Results:
Dataset: Cityscapes
Metrics:
mIoU: 77.94
mIoU(ms+flip): 79.13
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x1024_80k_cityscapes/encnet_r50-d8_512x1024_80k_cityscapes_20200622_003554-fc5c5624.pth
- Config: configs/encnet/encnet_r101-d8_512x1024_80k_cityscapes.py
In Collection: encnet
Metadata:
backbone: R-101-D8
crop size: (512,1024)
lr schd: 80000
Name: encnet_r101-d8_512x1024_80k_cityscapes
Results:
Dataset: Cityscapes
Metrics:
mIoU: 78.55
mIoU(ms+flip): 79.47
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x1024_80k_cityscapes/encnet_r101-d8_512x1024_80k_cityscapes_20200622_003555-1de64bec.pth
- Config: configs/encnet/encnet_r50-d8_769x769_80k_cityscapes.py
In Collection: encnet
Metadata:
backbone: R-50-D8
crop size: (769,769)
lr schd: 80000
Name: encnet_r50-d8_769x769_80k_cityscapes
Results:
Dataset: Cityscapes
Metrics:
mIoU: 77.44
mIoU(ms+flip): 78.72
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_769x769_80k_cityscapes/encnet_r50-d8_769x769_80k_cityscapes_20200622_003554-55096dcb.pth
- Config: configs/encnet/encnet_r101-d8_769x769_80k_cityscapes.py
In Collection: encnet
Metadata:
backbone: R-101-D8
crop size: (769,769)
lr schd: 80000
Name: encnet_r101-d8_769x769_80k_cityscapes
Results:
Dataset: Cityscapes
Metrics:
mIoU: 76.1
mIoU(ms+flip): 76.97
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_769x769_80k_cityscapes/encnet_r101-d8_769x769_80k_cityscapes_20200622_003555-470ef79d.pth
- Config: configs/encnet/encnet_r50-d8_512x512_80k_ade20k.py
In Collection: encnet
Metadata:
backbone: R-50-D8
crop size: (512,512)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (512,512)
value: 43.84
lr schd: 80000
memory (GB): 10.1
Name: encnet_r50-d8_512x512_80k_ade20k
Results:
Dataset: ADE20K
Metrics:
mIoU: 39.53
mIoU(ms+flip): 41.17
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x512_80k_ade20k/encnet_r50-d8_512x512_80k_ade20k_20200622_042412-44b46b04.pth
- Config: configs/encnet/encnet_r101-d8_512x512_80k_ade20k.py
In Collection: encnet
Metadata:
backbone: R-101-D8
crop size: (512,512)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (512,512)
value: 67.25
lr schd: 80000
memory (GB): 13.6
Name: encnet_r101-d8_512x512_80k_ade20k
Results:
Dataset: ADE20K
Metrics:
mIoU: 42.11
mIoU(ms+flip): 43.61
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x512_80k_ade20k/encnet_r101-d8_512x512_80k_ade20k_20200622_101128-dd35e237.pth
- Config: configs/encnet/encnet_r50-d8_512x512_160k_ade20k.py
In Collection: encnet
Metadata:
backbone: R-50-D8
crop size: (512,512)
lr schd: 160000
Name: encnet_r50-d8_512x512_160k_ade20k
Results:
Dataset: ADE20K
Metrics:
mIoU: 40.1
mIoU(ms+flip): 41.71
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x512_160k_ade20k/encnet_r50-d8_512x512_160k_ade20k_20200622_101059-b2db95e0.pth
- Config: configs/encnet/encnet_r101-d8_512x512_160k_ade20k.py
In Collection: encnet
Metadata:
backbone: R-101-D8
crop size: (512,512)
lr schd: 160000
Name: encnet_r101-d8_512x512_160k_ade20k
Results:
Dataset: ADE20K
Metrics:
mIoU: 42.61
mIoU(ms+flip): 44.01
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x512_160k_ade20k/encnet_r101-d8_512x512_160k_ade20k_20200622_073348-7989641f.pth