mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
37 lines
3.8 KiB
Markdown
37 lines
3.8 KiB
Markdown
|
# NPU (HUAWEI Ascend)
|
||
|
|
||
|
## Usage
|
||
|
|
||
|
Please refer to the [building documentation of MMCV](https://mmcv.readthedocs.io/en/latest/get_started/build.html#build-mmcv-full-on-ascend-npu-machine) to install MMCV and [MMEngine](https://mmengine.readthedocs.io/en/latest/get_started/installation.html#build-from-source) on NPU devices.
|
||
|
|
||
|
Here we use 4 NPUs on your computer to train the model with the following command:
|
||
|
|
||
|
```shell
|
||
|
bash tools/dist_train.sh configs/deeplabv3/deeplabv3_r50-d8_512x1024_40k_cityscapes.py 4
|
||
|
```
|
||
|
|
||
|
Also, you can use only one NPU to train the model with the following command:
|
||
|
|
||
|
```shell
|
||
|
python tools/train.py configs/deeplabv3/deeplabv3_r50-d8_512x1024_40k_cityscapes.py
|
||
|
```
|
||
|
|
||
|
## Models Results
|
||
|
|
||
|
| Model | mIoU | Config | Download |
|
||
|
| :-----------------: | :---: | :--------------------------------------------------------------------------------------------------------------------------------------- | :------------------------------------------------------------------------------------------------------------------------- |
|
||
|
| [deeplabv3](<>) | 78.92 | [config](https://github.com/open-mmlab/mmsegmentation/tree/master/configs/deeplabv3/deeplabv3_r50-d8_512x1024_40k_cityscapes.py) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/device/npu/deeplabv3_r50-d8_512x1024_40k_cityscapes.log.json) |
|
||
|
| [deeplabv3plus](<>) | 79.68 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_40k_cityscapes.py) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/device/npu/deeplabv3plus_r50-d8_512x1024_40k_cityscapes.log.json) |
|
||
|
| [hrnet](<>) | 77.09 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/hrnet/fcn_hr18_512x1024_40k_cityscapes.py) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/device/npu/fcn_hr18_512x1024_40k_cityscapes.log.json) |
|
||
|
| [fcn](<>) | 72.69 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fcn/fcn_r50-d8_512x1024_40k_cityscapes.py) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/device/npu/fcn_r50-d8_512x1024_40k_cityscapes.log.json) |
|
||
|
| [pspnet](<>) | 78.07 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes.py) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/device/npu/pspnet_r50-d8_512x1024_80k_cityscapes.log.json) |
|
||
|
| [unet](<>) | 69.00 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/unet/fcn_unet_s5-d16_4x4_512x1024_160k_cityscapes.py) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/device/npu/fcn_unet_s5-d16_4x4_512x1024_160k_cityscapes.log.json) |
|
||
|
| [apcnet](<>) | 78.07 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/apcnet/apcnet_r50-d8_512x1024_40k_cityscapes.py) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/device/npu/apcnet_r50-d8_512x1024_40k_cityscapes.log.json) |
|
||
|
| [upernet](<>) | 78.22 | [config](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/upernet/upernet_r50_4xb2-40k_cityscapes-512x1024.py) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/device/npu/upernet_r50_512x1024_40k_cityscapes.log.json) |
|
||
|
|
||
|
**Notes:**
|
||
|
|
||
|
- If not specially marked, the results on NPU with amp are the basically same as those on the GPU with FP32.
|
||
|
|
||
|
**All above models are provided by Huawei Ascend group.**
|