2022-03-30 15:25:10 +08:00
|
|
|
_base_ = [
|
|
|
|
'../_base_/models/upernet_beit.py', '../_base_/datasets/ade20k_640x640.py',
|
|
|
|
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
|
|
|
|
]
|
2022-06-10 22:02:40 +08:00
|
|
|
crop_size = (640, 640)
|
2022-06-19 14:32:09 +08:00
|
|
|
data_preprocessor = dict(size=crop_size)
|
2022-03-30 15:25:10 +08:00
|
|
|
model = dict(
|
2022-06-19 14:32:09 +08:00
|
|
|
data_preprocessor=data_preprocessor,
|
2022-03-30 15:25:10 +08:00
|
|
|
pretrained='pretrain/beit_base_patch16_224_pt22k_ft22k.pth',
|
|
|
|
test_cfg=dict(mode='slide', crop_size=(640, 640), stride=(426, 426)))
|
|
|
|
|
2022-06-08 14:28:35 +08:00
|
|
|
optim_wrapper = dict(
|
2022-06-20 17:53:36 +08:00
|
|
|
_delete_=True,
|
2022-06-08 14:28:35 +08:00
|
|
|
type='OptimWrapper',
|
2022-06-20 17:53:36 +08:00
|
|
|
optimizer=dict(
|
|
|
|
type='AdamW', lr=3e-5, betas=(0.9, 0.999), weight_decay=0.05),
|
2022-03-30 15:25:10 +08:00
|
|
|
constructor='LayerDecayOptimizerConstructor',
|
|
|
|
paramwise_cfg=dict(num_layers=12, layer_decay_rate=0.9))
|
|
|
|
|
2022-06-08 17:25:00 +08:00
|
|
|
param_scheduler = [
|
|
|
|
dict(
|
|
|
|
type='LinearLR', start_factor=1e-6, by_epoch=False, begin=0, end=1500),
|
|
|
|
dict(
|
|
|
|
type='PolyLR',
|
|
|
|
power=1.0,
|
|
|
|
begin=1500,
|
|
|
|
end=160000,
|
|
|
|
eta_min=0.0,
|
|
|
|
by_epoch=False,
|
|
|
|
)
|
|
|
|
]
|
2022-03-30 15:25:10 +08:00
|
|
|
|
|
|
|
# By default, models are trained on 8 GPUs with 2 images per GPU
|
2022-05-31 22:28:42 +08:00
|
|
|
train_dataloader = dict(batch_size=2)
|
2022-06-12 17:10:26 +08:00
|
|
|
val_dataloader = dict(batch_size=1)
|
2022-05-31 22:28:42 +08:00
|
|
|
test_dataloader = val_dataloader
|