mmsegmentation/configs/deeplabv3/README.md

118 lines
36 KiB
Markdown
Raw Normal View History

# DeepLabV3
[Rethinking atrous convolution for semantic image segmentation](https://arxiv.org/abs/1706.05587)
2020-07-07 20:52:19 +08:00
## Introduction
2021-04-25 00:58:59 +08:00
<!-- [ALGORITHM] -->
<a href="https://github.com/tensorflow/models/tree/master/research/deeplab">Official Repo</a>
<a href="https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/aspp_head.py#L54">Code Snippet</a>
## Abstract
<!-- [ABSTRACT] -->
In this work, we revisit atrous convolution, a powerful tool to explicitly adjust filter's field-of-view as well as control the resolution of feature responses computed by Deep Convolutional Neural Networks, in the application of semantic image segmentation. To handle the problem of segmenting objects at multiple scales, we design modules which employ atrous convolution in cascade or in parallel to capture multi-scale context by adopting multiple atrous rates. Furthermore, we propose to augment our previously proposed Atrous Spatial Pyramid Pooling module, which probes convolutional features at multiple scales, with image-level features encoding global context and further boost performance. We also elaborate on implementation details and share our experience on training our system. The proposed \`DeepLabv3' system significantly improves over our previous DeepLab versions without DenseCRF post-processing and attains comparable performance with other state-of-art models on the PASCAL VOC 2012 semantic image segmentation benchmark.
<!-- [IMAGE] -->
<div align=center>
<img src="https://user-images.githubusercontent.com/24582831/142900575-f30a7755-09aa-406a-bf78-45893a61ee9a.png" width="80%"/>
</div>
## Citation
```bibtext
2020-07-07 20:52:19 +08:00
@article{chen2017rethinking,
title={Rethinking atrous convolution for semantic image segmentation},
author={Chen, Liang-Chieh and Papandreou, George and Schroff, Florian and Adam, Hartwig},
journal={arXiv preprint arXiv:1706.05587},
year={2017}
}
```
## Results and models
### Cityscapes
| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download |
| ---------------- | --------------- | --------- | ------: | -------- | -------------- | ----: | ------------: | ---------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| DeepLabV3 | R-50-D8 | 512x1024 | 40000 | 6.1 | 2.57 | 79.09 | 80.45 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3/deeplabv3_r50-d8_512x1024_40k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x1024_40k_cityscapes/deeplabv3_r50-d8_512x1024_40k_cityscapes_20200605_022449-acadc2f8.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x1024_40k_cityscapes/deeplabv3_r50-d8_512x1024_40k_cityscapes_20200605_022449.log.json) |
| DeepLabV3 | R-101-D8 | 512x1024 | 40000 | 9.6 | 1.92 | 77.12 | 79.61 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3/deeplabv3_r101-d8_512x1024_40k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x1024_40k_cityscapes/deeplabv3_r101-d8_512x1024_40k_cityscapes_20200605_012241-7fd3f799.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x1024_40k_cityscapes/deeplabv3_r101-d8_512x1024_40k_cityscapes_20200605_012241.log.json) |
| DeepLabV3 | R-50-D8 | 769x769 | 40000 | 6.9 | 1.11 | 78.58 | 79.89 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3/deeplabv3_r50-d8_769x769_40k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_769x769_40k_cityscapes/deeplabv3_r50-d8_769x769_40k_cityscapes_20200606_113723-7eda553c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_769x769_40k_cityscapes/deeplabv3_r50-d8_769x769_40k_cityscapes_20200606_113723.log.json) |
| DeepLabV3 | R-101-D8 | 769x769 | 40000 | 10.9 | 0.83 | 79.27 | 80.11 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3/deeplabv3_r101-d8_769x769_40k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_769x769_40k_cityscapes/deeplabv3_r101-d8_769x769_40k_cityscapes_20200606_113809-c64f889f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_769x769_40k_cityscapes/deeplabv3_r101-d8_769x769_40k_cityscapes_20200606_113809.log.json) |
| DeepLabV3 | R-18-D8 | 512x1024 | 80000 | 1.7 | 13.78 | 76.70 | 78.27 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3/deeplabv3_r18-d8_512x1024_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18-d8_512x1024_80k_cityscapes/deeplabv3_r18-d8_512x1024_80k_cityscapes_20201225_021506-23dffbe2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18-d8_512x1024_80k_cityscapes/deeplabv3_r18-d8_512x1024_80k_cityscapes-20201225_021506.log.json) |
| DeepLabV3 | R-50-D8 | 512x1024 | 80000 | - | - | 79.32 | 80.57 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3/deeplabv3_r50-d8_512x1024_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x1024_80k_cityscapes/deeplabv3_r50-d8_512x1024_80k_cityscapes_20200606_113404-b92cfdd4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x1024_80k_cityscapes/deeplabv3_r50-d8_512x1024_80k_cityscapes_20200606_113404.log.json) |
| DeepLabV3 | R-101-D8 | 512x1024 | 80000 | - | - | 80.20 | 81.21 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3/deeplabv3_r101-d8_512x1024_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x1024_80k_cityscapes/deeplabv3_r101-d8_512x1024_80k_cityscapes_20200606_113503-9e428899.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x1024_80k_cityscapes/deeplabv3_r101-d8_512x1024_80k_cityscapes_20200606_113503.log.json) |
| DeepLabV3 (FP16) | R-101-D8 | 512x1024 | 80000 | 5.75 | 3.86 | 80.48 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3/deeplabv3_r101-d8_fp16_512x1024_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_fp16_512x1024_80k_cityscapes/deeplabv3_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230920-774d9cec.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_fp16_512x1024_80k_cityscapes/deeplabv3_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230920.log.json) |
| DeepLabV3 | R-18-D8 | 769x769 | 80000 | 1.9 | 5.55 | 76.60 | 78.26 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3/deeplabv3_r18-d8_769x769_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18-d8_769x769_80k_cityscapes/deeplabv3_r18-d8_769x769_80k_cityscapes_20201225_021506-6452126a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18-d8_769x769_80k_cityscapes/deeplabv3_r18-d8_769x769_80k_cityscapes-20201225_021506.log.json) |
| DeepLabV3 | R-50-D8 | 769x769 | 80000 | - | - | 79.89 | 81.06 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3/deeplabv3_r50-d8_769x769_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_769x769_80k_cityscapes/deeplabv3_r50-d8_769x769_80k_cityscapes_20200606_221338-788d6228.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_769x769_80k_cityscapes/deeplabv3_r50-d8_769x769_80k_cityscapes_20200606_221338.log.json) |
| DeepLabV3 | R-101-D8 | 769x769 | 80000 | - | - | 79.67 | 80.81 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3/deeplabv3_r101-d8_769x769_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_769x769_80k_cityscapes/deeplabv3_r101-d8_769x769_80k_cityscapes_20200607_013353-60e95418.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_769x769_80k_cityscapes/deeplabv3_r101-d8_769x769_80k_cityscapes_20200607_013353.log.json) |
| DeepLabV3 | R-101-D16-MG124 | 512x1024 | 40000 | 4.7 | - 6.96 | 76.71 | 78.63 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3/deeplabv3_r101-d16-mg124_512x1024_40k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d16-mg124_512x1024_40k_cityscapes/deeplabv3_r101-d16-mg124_512x1024_40k_cityscapes_20200908_005644-67b0c992.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d16-mg124_512x1024_40k_cityscapes/deeplabv3_r101-d16-mg124_512x1024_40k_cityscapes-20200908_005644.log.json) |
| DeepLabV3 | R-101-D16-MG124 | 512x1024 | 80000 | - | - | 78.36 | 79.84 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3/deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes/deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes_20200908_005644-57bb8425.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes/deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes-20200908_005644.log.json) |
| DeepLabV3 | R-18b-D8 | 512x1024 | 80000 | 1.6 | 13.93 | 76.26 | 77.88 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3/deeplabv3_r18b-d8_512x1024_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18b-d8_512x1024_80k_cityscapes/deeplabv3_r18b-d8_512x1024_80k_cityscapes_20201225_094144-46040cef.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18b-d8_512x1024_80k_cityscapes/deeplabv3_r18b-d8_512x1024_80k_cityscapes-20201225_094144.log.json) |
| DeepLabV3 | R-50b-D8 | 512x1024 | 80000 | 6.0 | 2.74 | 79.63 | 80.98 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3/deeplabv3_r50b-d8_512x1024_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50b-d8_512x1024_80k_cityscapes/deeplabv3_r50b-d8_512x1024_80k_cityscapes_20201225_155148-ec368954.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50b-d8_512x1024_80k_cityscapes/deeplabv3_r50b-d8_512x1024_80k_cityscapes-20201225_155148.log.json) |
| DeepLabV3 | R-101b-D8 | 512x1024 | 80000 | 9.5 | 1.81 | 80.01 | 81.21 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3/deeplabv3_r101b-d8_512x1024_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101b-d8_512x1024_80k_cityscapes/deeplabv3_r101b-d8_512x1024_80k_cityscapes_20201226_171821-8fd49503.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101b-d8_512x1024_80k_cityscapes/deeplabv3_r101b-d8_512x1024_80k_cityscapes-20201226_171821.log.json) |
| DeepLabV3 | R-18b-D8 | 769x769 | 80000 | 1.8 | 5.79 | 76.63 | 77.51 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3/deeplabv3_r18b-d8_769x769_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18b-d8_769x769_80k_cityscapes/deeplabv3_r18b-d8_769x769_80k_cityscapes_20201225_094144-fdc985d9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18b-d8_769x769_80k_cityscapes/deeplabv3_r18b-d8_769x769_80k_cityscapes-20201225_094144.log.json) |
| DeepLabV3 | R-50b-D8 | 769x769 | 80000 | 6.8 | 1.16 | 78.80 | 80.27 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3/deeplabv3_r50b-d8_769x769_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50b-d8_769x769_80k_cityscapes/deeplabv3_r50b-d8_769x769_80k_cityscapes_20201225_155404-87fb0cf4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50b-d8_769x769_80k_cityscapes/deeplabv3_r50b-d8_769x769_80k_cityscapes-20201225_155404.log.json) |
| DeepLabV3 | R-101b-D8 | 769x769 | 80000 | 10.7 | 0.82 | 79.41 | 80.73 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3/deeplabv3_r101b-d8_769x769_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101b-d8_769x769_80k_cityscapes/deeplabv3_r101b-d8_769x769_80k_cityscapes_20201226_190843-9142ee57.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101b-d8_769x769_80k_cityscapes/deeplabv3_r101b-d8_769x769_80k_cityscapes-20201226_190843.log.json) |
2020-07-07 20:52:19 +08:00
### ADE20K
| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download |
| --------- | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| DeepLabV3 | R-50-D8 | 512x512 | 80000 | 8.9 | 14.76 | 42.42 | 43.28 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3/deeplabv3_r50-d8_512x512_80k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_80k_ade20k/deeplabv3_r50-d8_512x512_80k_ade20k_20200614_185028-0bb3f844.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_80k_ade20k/deeplabv3_r50-d8_512x512_80k_ade20k_20200614_185028.log.json) |
| DeepLabV3 | R-101-D8 | 512x512 | 80000 | 12.4 | 10.14 | 44.08 | 45.19 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3/deeplabv3_r101-d8_512x512_80k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_80k_ade20k/deeplabv3_r101-d8_512x512_80k_ade20k_20200615_021256-d89c7fa4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_80k_ade20k/deeplabv3_r101-d8_512x512_80k_ade20k_20200615_021256.log.json) |
| DeepLabV3 | R-50-D8 | 512x512 | 160000 | - | - | 42.66 | 44.09 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3/deeplabv3_r50-d8_512x512_160k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_160k_ade20k/deeplabv3_r50-d8_512x512_160k_ade20k_20200615_123227-5d0ee427.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_160k_ade20k/deeplabv3_r50-d8_512x512_160k_ade20k_20200615_123227.log.json) |
| DeepLabV3 | R-101-D8 | 512x512 | 160000 | - | - | 45.00 | 46.66 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3/deeplabv3_r101-d8_512x512_160k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_160k_ade20k/deeplabv3_r101-d8_512x512_160k_ade20k_20200615_105816-b1f72b3b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_160k_ade20k/deeplabv3_r101-d8_512x512_160k_ade20k_20200615_105816.log.json) |
2020-07-07 20:52:19 +08:00
### Pascal VOC 2012 + Aug
| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download |
| --------- | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| DeepLabV3 | R-50-D8 | 512x512 | 20000 | 6.1 | 13.88 | 76.17 | 77.42 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3/deeplabv3_r50-d8_512x512_20k_voc12aug.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_20k_voc12aug/deeplabv3_r50-d8_512x512_20k_voc12aug_20200617_010906-596905ef.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_20k_voc12aug/deeplabv3_r50-d8_512x512_20k_voc12aug_20200617_010906.log.json) |
| DeepLabV3 | R-101-D8 | 512x512 | 20000 | 9.6 | 9.81 | 78.70 | 79.95 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3/deeplabv3_r101-d8_512x512_20k_voc12aug.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_20k_voc12aug/deeplabv3_r101-d8_512x512_20k_voc12aug_20200617_010932-8d13832f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_20k_voc12aug/deeplabv3_r101-d8_512x512_20k_voc12aug_20200617_010932.log.json) |
| DeepLabV3 | R-50-D8 | 512x512 | 40000 | - | - | 77.68 | 78.78 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3/deeplabv3_r50-d8_512x512_40k_voc12aug.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_40k_voc12aug/deeplabv3_r50-d8_512x512_40k_voc12aug_20200613_161546-2ae96e7e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_40k_voc12aug/deeplabv3_r50-d8_512x512_40k_voc12aug_20200613_161546.log.json) |
| DeepLabV3 | R-101-D8 | 512x512 | 40000 | - | - | 77.92 | 79.18 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3/deeplabv3_r101-d8_512x512_40k_voc12aug.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_40k_voc12aug/deeplabv3_r101-d8_512x512_40k_voc12aug_20200613_161432-0017d784.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_40k_voc12aug/deeplabv3_r101-d8_512x512_40k_voc12aug_20200613_161432.log.json) |
### Pascal Context
| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download |
| --------- | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| DeepLabV3 | R-101-D8 | 480x480 | 40000 | 9.2 | 7.09 | 46.55 | 47.81 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context/deeplabv3_r101-d8_480x480_40k_pascal_context_20200911_204118-1aa27336.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context/deeplabv3_r101-d8_480x480_40k_pascal_context-20200911_204118.log.json) |
| DeepLabV3 | R-101-D8 | 480x480 | 80000 | - | - | 46.42 | 47.53 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context/deeplabv3_r101-d8_480x480_80k_pascal_context_20200911_170155-2a21fff3.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context/deeplabv3_r101-d8_480x480_80k_pascal_context-20200911_170155.log.json) |
### Pascal Context 59
| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download |
| --------- | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| DeepLabV3 | R-101-D8 | 480x480 | 40000 | - | - | 52.61 | 54.28 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context_59.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context_59/deeplabv3_r101-d8_480x480_40k_pascal_context_59_20210416_110332-cb08ea46.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context_59/deeplabv3_r101-d8_480x480_40k_pascal_context_59-20210416_110332.log.json) |
| DeepLabV3 | R-101-D8 | 480x480 | 80000 | - | - | 52.46 | 54.09 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context_59.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context_59/deeplabv3_r101-d8_480x480_80k_pascal_context_59_20210416_113002-26303993.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context_59/deeplabv3_r101-d8_480x480_80k_pascal_context_59-20210416_113002.log.json) |
support coco stuff-10k/164k (#625) * support coco stuff-10k/164k * update docs * fix docs * update docs * fix import lints * Update docs/dataset_prepare.md * Update docs/dataset_prepare.md * Update tools/convert_datasets/coco_stuff164k.py * Update tools/convert_datasets/coco_stuff10k.py * Update tools/convert_datasets/coco_stuff10k.py * Update tools/convert_datasets/coco_stuff10k.py * Update tools/convert_datasets/coco_stuff10k.py * Update coco_stuff.py fix the description of the dataset * Update dataset_prepare.md fix the doc tree of coco stuff 10k * Update coco_stuff10k.py fix img_dir * Update coco_stuff.py fix descriptions * Update coco_stuff164k.py fix out_dir * Update coco_stuff10k.py fix save file name * Update coco_stuff.py fix seg_map_suffix * Update dataset_prepare.md fix -p * Update dataset_prepare.md fix doc tree * modify coco stuff convertor * Remove redundant code * fix 164k convert bug * remove redundant comment * add deeplabv3 configs and more iterations * replace shutil.move with shtil.copyfile * Update deeplabv3_r50-d8_512x512_4x4_80k_coco_stuff10k.py fix wrong config * Update deeplabv3_r101-d8_512x512_4x4_80k_coco_stuff164k.py fix wrong config * fix wrong configs * fix wrong configs * fix wrong path for coco stuff 10k * fix convert bugs * fix seg_filename bug * when nproc=0, use track progress * rename configs: coco_stuff --> coco-stuff * add coco-stuff 10k and 164k to README.md * update configs * add deeplabv3 benchmark * add pspnet benchmark * remove redundant comma Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn>
2021-09-22 20:48:08 +08:00
### COCO-Stuff 10k
| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download |
| --------- | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| DeepLabV3 | R-50-D8 | 512x512 | 20000 | 9.6 | 10.8 | 34.66 | 36.08 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3_r50-d8_512x512_4x4_20k_coco-stuff10k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_20k_coco-stuff10k/deeplabv3_r50-d8_512x512_4x4_20k_coco-stuff10k_20210821_043025-b35f789d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_20k_coco-stuff10k/deeplabv3_r50-d8_512x512_4x4_20k_coco-stuff10k_20210821_043025.log.json) |
| DeepLabV3 | R-101-D8 | 512x512 | 20000 | 13.2 | 8.7 | 37.30 | 38.42 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3_r101-d8_512x512_4x4_20k_coco-stuff10k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_20k_coco-stuff10k/deeplabv3_r101-d8_512x512_4x4_20k_coco-stuff10k_20210821_043025-c49752cb.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_20k_coco-stuff10k/deeplabv3_r101-d8_512x512_4x4_20k_coco-stuff10k_20210821_043025.log.json) |
| DeepLabV3 | R-50-D8 | 512x512 | 40000 | - | - | 35.73 | 37.09 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3_r50-d8_512x512_4x4_40k_coco-stuff10k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_40k_coco-stuff10k/deeplabv3_r50-d8_512x512_4x4_40k_coco-stuff10k_20210821_043305-dc76f3ff.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_40k_coco-stuff10k/deeplabv3_r50-d8_512x512_4x4_40k_coco-stuff10k_20210821_043305.log.json) |
| DeepLabV3 | R-101-D8 | 512x512 | 40000 | - | - | 37.81 | 38.80 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3_r101-d8_512x512_4x4_40k_coco-stuff10k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_40k_coco-stuff10k/deeplabv3_r101-d8_512x512_4x4_40k_coco-stuff10k_20210821_043305-636cb433.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_40k_coco-stuff10k/deeplabv3_r101-d8_512x512_4x4_40k_coco-stuff10k_20210821_043305.log.json) |
support coco stuff-10k/164k (#625) * support coco stuff-10k/164k * update docs * fix docs * update docs * fix import lints * Update docs/dataset_prepare.md * Update docs/dataset_prepare.md * Update tools/convert_datasets/coco_stuff164k.py * Update tools/convert_datasets/coco_stuff10k.py * Update tools/convert_datasets/coco_stuff10k.py * Update tools/convert_datasets/coco_stuff10k.py * Update tools/convert_datasets/coco_stuff10k.py * Update coco_stuff.py fix the description of the dataset * Update dataset_prepare.md fix the doc tree of coco stuff 10k * Update coco_stuff10k.py fix img_dir * Update coco_stuff.py fix descriptions * Update coco_stuff164k.py fix out_dir * Update coco_stuff10k.py fix save file name * Update coco_stuff.py fix seg_map_suffix * Update dataset_prepare.md fix -p * Update dataset_prepare.md fix doc tree * modify coco stuff convertor * Remove redundant code * fix 164k convert bug * remove redundant comment * add deeplabv3 configs and more iterations * replace shutil.move with shtil.copyfile * Update deeplabv3_r50-d8_512x512_4x4_80k_coco_stuff10k.py fix wrong config * Update deeplabv3_r101-d8_512x512_4x4_80k_coco_stuff164k.py fix wrong config * fix wrong configs * fix wrong configs * fix wrong path for coco stuff 10k * fix convert bugs * fix seg_filename bug * when nproc=0, use track progress * rename configs: coco_stuff --> coco-stuff * add coco-stuff 10k and 164k to README.md * update configs * add deeplabv3 benchmark * add pspnet benchmark * remove redundant comma Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn>
2021-09-22 20:48:08 +08:00
### COCO-Stuff 164k
| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download |
| --------- | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| DeepLabV3 | R-50-D8 | 512x512 | 80000 | 9.6 | 10.8 | 39.38 | 40.03 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3_r50-d8_512x512_4x4_80k_coco-stuff164k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_80k_coco-stuff164k/deeplabv3_r50-d8_512x512_4x4_80k_coco-stuff164k_20210709_163016-88675c24.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_80k_coco-stuff164k/deeplabv3_r50-d8_512x512_4x4_80k_coco-stuff164k_20210709_163016.log.json) |
| DeepLabV3 | R-101-D8 | 512x512 | 80000 | 13.2 | 8.7 | 40.87 | 41.50 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3_r101-d8_512x512_4x4_80k_coco-stuff164k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_80k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_80k_coco-stuff164k_20210709_201252-13600dc2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_80k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_80k_coco-stuff164k_20210709_201252.log.json) |
| DeepLabV3 | R-50-D8 | 512x512 | 160000 | - | - | 41.09 | 41.69 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3_r50-d8_512x512_4x4_160k_coco-stuff164k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_160k_coco-stuff164k/deeplabv3_r50-d8_512x512_4x4_160k_coco-stuff164k_20210709_163016-49f2812b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_160k_coco-stuff164k/deeplabv3_r50-d8_512x512_4x4_160k_coco-stuff164k_20210709_163016.log.json) |
| DeepLabV3 | R-101-D8 | 512x512 | 160000 | - | - | 41.82 | 42.49 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3_r101-d8_512x512_4x4_160k_coco-stuff164k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_160k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_160k_coco-stuff164k_20210709_155402-f035acfd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_160k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_160k_coco-stuff164k_20210709_155402.log.json) |
| DeepLabV3 | R-50-D8 | 512x512 | 320000 | - | - | 41.37 | 42.22 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3_r50-d8_512x512_4x4_320k_coco-stuff164k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_320k_coco-stuff164k/deeplabv3_r50-d8_512x512_4x4_320k_coco-stuff164k_20210709_155403-51b21115.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_320k_coco-stuff164k/deeplabv3_r50-d8_512x512_4x4_320k_coco-stuff164k_20210709_155403.log.json) |
| DeepLabV3 | R-101-D8 | 512x512 | 320000 | - | - | 42.61 | 43.42 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3_r101-d8_512x512_4x4_320k_coco-stuff164k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_320k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_320k_coco-stuff164k_20210709_155402-3cbca14d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_320k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_320k_coco-stuff164k_20210709_155402.log.json) |
Note:
- `D-8` here corresponding to the output stride 8 setting for DeepLab series.
- `FP16` means Mixed Precision (FP16) is adopted in training.