202 lines
6.5 KiB
Markdown
202 lines
6.5 KiB
Markdown
|
# Wandb Feature Map Visualization
|
||
|
|
||
|
MMSegmentation 1.x provides backend support for Weights & Biases to facilitate visualization and management of project code results.
|
||
|
|
||
|
## Wandb Configuration
|
||
|
|
||
|
Install Weights & Biases following [official instructions](https://docs.wandb.ai/quickstart) e.g.
|
||
|
|
||
|
```shell
|
||
|
pip install wandb
|
||
|
wandb login
|
||
|
```
|
||
|
|
||
|
Add `WandbVisBackend` in `vis_backend` of `visualizer` in `default_runtime.py` config file:
|
||
|
|
||
|
```python
|
||
|
vis_backends=[dict(type='LocalVisBackend'),
|
||
|
dict(type='TensorboardVisBackend'),
|
||
|
dict(type='WandbVisBackend')]
|
||
|
```
|
||
|
|
||
|
## Examining feature map visualization in Wandb
|
||
|
|
||
|
`SegLocalVisualizer` is child class inherits from `Visualizer` in MMEngine and works for MMSegmentation visualization, for more details about `Visualizer` please refer to [visualization tutorial](https://github.com/open-mmlab/mmengine/blob/main/docs/en/advanced_tutorials/visualization.md) in MMEngine.
|
||
|
|
||
|
Here is an example about `SegLocalVisualizer`, first you may download example data below by following commands:
|
||
|
|
||
|
<div align=center>
|
||
|
<img src="https://user-images.githubusercontent.com/24582831/189833109-eddad58f-f777-4fc0-b98a-6bd429143b06.png" width="70%"/>
|
||
|
</div>
|
||
|
|
||
|
```shell
|
||
|
wget https://user-images.githubusercontent.com/24582831/189833109-eddad58f-f777-4fc0-b98a-6bd429143b06.png --output-document aachen_000000_000019_leftImg8bit.png
|
||
|
wget https://user-images.githubusercontent.com/24582831/189833143-15f60f8a-4d1e-4cbb-a6e7-5e2233869fac.png --output-document aachen_000000_000019_gtFine_labelTrainIds.png
|
||
|
|
||
|
wget https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x1024_40k_cityscapes/ann_r50-d8_512x1024_40k_cityscapes_20200605_095211-049fc292.pth
|
||
|
|
||
|
```
|
||
|
|
||
|
```python
|
||
|
# Copyright (c) OpenMMLab. All rights reserved.
|
||
|
from argparse import ArgumentParser
|
||
|
from typing import Type
|
||
|
|
||
|
import mmcv
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
|
||
|
from mmengine.model import revert_sync_batchnorm
|
||
|
from mmengine.structures import PixelData
|
||
|
from mmseg.apis import inference_model, init_model
|
||
|
from mmseg.structures import SegDataSample
|
||
|
from mmseg.utils import register_all_modules
|
||
|
from mmseg.visualization import SegLocalVisualizer
|
||
|
|
||
|
|
||
|
class Recorder:
|
||
|
"""record the forward output feature map and save to data_buffer."""
|
||
|
|
||
|
def __init__(self) -> None:
|
||
|
self.data_buffer = list()
|
||
|
|
||
|
def __enter__(self, ):
|
||
|
self._data_buffer = list()
|
||
|
|
||
|
def record_data_hook(self, model: nn.Module, input: Type, output: Type):
|
||
|
self.data_buffer.append(output)
|
||
|
|
||
|
def __exit__(self, *args, **kwargs):
|
||
|
pass
|
||
|
|
||
|
|
||
|
def visualize(args, model, recorder, result):
|
||
|
seg_visualizer = SegLocalVisualizer(
|
||
|
vis_backends=[dict(type='WandbVisBackend')],
|
||
|
save_dir='temp_dir',
|
||
|
alpha=0.5)
|
||
|
seg_visualizer.dataset_meta = dict(
|
||
|
classes=model.dataset_meta['classes'],
|
||
|
palette=model.dataset_meta['palette'])
|
||
|
|
||
|
image = mmcv.imread(args.img, 'color')
|
||
|
|
||
|
seg_visualizer.add_datasample(
|
||
|
name='predict',
|
||
|
image=image,
|
||
|
data_sample=result,
|
||
|
draw_gt=False,
|
||
|
draw_pred=True,
|
||
|
wait_time=0,
|
||
|
out_file=None,
|
||
|
show=False)
|
||
|
|
||
|
# add feature map to wandb visualizer
|
||
|
for i in range(len(recorder.data_buffer)):
|
||
|
feature = recorder.data_buffer[i][0] # remove the batch
|
||
|
drawn_img = seg_visualizer.draw_featmap(
|
||
|
feature, image, channel_reduction='select_max')
|
||
|
seg_visualizer.add_image(f'feature_map{i}', drawn_img)
|
||
|
|
||
|
if args.gt_mask:
|
||
|
sem_seg = mmcv.imread(args.gt_mask, 'unchanged')
|
||
|
sem_seg = torch.from_numpy(sem_seg)
|
||
|
gt_mask = dict(data=sem_seg)
|
||
|
gt_mask = PixelData(**gt_mask)
|
||
|
data_sample = SegDataSample()
|
||
|
data_sample.gt_sem_seg = gt_mask
|
||
|
|
||
|
seg_visualizer.add_datasample(
|
||
|
name='gt_mask',
|
||
|
image=image,
|
||
|
data_sample=data_sample,
|
||
|
draw_gt=True,
|
||
|
draw_pred=False,
|
||
|
wait_time=0,
|
||
|
out_file=None,
|
||
|
show=False)
|
||
|
|
||
|
seg_visualizer.add_image('image', image)
|
||
|
|
||
|
|
||
|
def main():
|
||
|
parser = ArgumentParser(
|
||
|
description='Draw the Feature Map During Inference')
|
||
|
parser.add_argument('img', help='Image file')
|
||
|
parser.add_argument('config', help='Config file')
|
||
|
parser.add_argument('checkpoint', help='Checkpoint file')
|
||
|
parser.add_argument('--gt_mask', default=None, help='Path of gt mask file')
|
||
|
parser.add_argument('--out-file', default=None, help='Path to output file')
|
||
|
parser.add_argument(
|
||
|
'--device', default='cuda:0', help='Device used for inference')
|
||
|
parser.add_argument(
|
||
|
'--opacity',
|
||
|
type=float,
|
||
|
default=0.5,
|
||
|
help='Opacity of painted segmentation map. In (0, 1] range.')
|
||
|
parser.add_argument(
|
||
|
'--title', default='result', help='The image identifier.')
|
||
|
args = parser.parse_args()
|
||
|
|
||
|
register_all_modules()
|
||
|
|
||
|
# build the model from a config file and a checkpoint file
|
||
|
model = init_model(args.config, args.checkpoint, device=args.device)
|
||
|
if args.device == 'cpu':
|
||
|
model = revert_sync_batchnorm(model)
|
||
|
|
||
|
# show all named module in the model and use it in source list below
|
||
|
for name, module in model.named_modules():
|
||
|
print(name)
|
||
|
|
||
|
source = [
|
||
|
'decode_head.fusion.stages.0.query_project.activate',
|
||
|
'decode_head.context.stages.0.key_project.activate',
|
||
|
'decode_head.context.bottleneck.activate'
|
||
|
]
|
||
|
source = dict.fromkeys(source)
|
||
|
|
||
|
count = 0
|
||
|
recorder = Recorder()
|
||
|
# registry the forward hook
|
||
|
for name, module in model.named_modules():
|
||
|
if name in source:
|
||
|
count += 1
|
||
|
module.register_forward_hook(recorder.record_data_hook)
|
||
|
if count == len(source):
|
||
|
break
|
||
|
|
||
|
with recorder:
|
||
|
# test a single image, and record feature map to data_buffer
|
||
|
result = inference_model(model, args.img)
|
||
|
|
||
|
visualize(args, model, recorder, result)
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
main()
|
||
|
|
||
|
```
|
||
|
|
||
|
Save the above code as feature_map_visual.py and execute the following code in terminal
|
||
|
|
||
|
```shell
|
||
|
python feature_map_visual.py ${image} ${config} ${checkpoint} [optional args]
|
||
|
```
|
||
|
|
||
|
e.g
|
||
|
|
||
|
```shell
|
||
|
python feature_map_visual.py \
|
||
|
aachen_000000_000019_leftImg8bit.png \
|
||
|
configs/ann/ann_r50-d8_4xb2-40k_cityscapes-512x1024.py \
|
||
|
ann_r50-d8_512x1024_40k_cityscapes_20200605_095211-049fc292.pth \
|
||
|
--gt_mask aachen_000000_000019_gtFine_labelTrainIds.png
|
||
|
```
|
||
|
|
||
|
The visualized image result and its corresponding reature map will appear in the wandb account.
|
||
|
|
||
|
<div align=center>
|
||
|
<img src="https://user-images.githubusercontent.com/76149310/217520321-647f5bf9-eef2-446d-a9e8-5ca7b621d500.png">
|
||
|
</div>
|