mmsegmentation/tests/test_visualization/test_local_visualizer.py

188 lines
7.0 KiB
Python
Raw Normal View History

# Copyright (c) OpenMMLab. All rights reserved.
import os
import os.path as osp
from unittest import TestCase
import cv2
import mmcv
import numpy as np
import torch
from mmengine.data import PixelData
from mmseg.data import SegDataSample
from mmseg.visualization import SegLocalVisualizer
class TestSegLocalVisualizer(TestCase):
def test_add_datasample(self):
h = 10
w = 12
num_class = 2
out_file = 'out_file'
image = np.random.randint(0, 256, size=(h, w, 3)).astype('uint8')
# test gt_sem_seg
gt_sem_seg_data = dict(data=torch.randint(0, num_class, (1, h, w)))
gt_sem_seg = PixelData(**gt_sem_seg_data)
gt_seg_data_sample = SegDataSample()
gt_seg_data_sample.gt_sem_seg = gt_sem_seg
seg_local_visualizer = SegLocalVisualizer(
vis_backends=[dict(type='LocalVisBackend')], save_dir='temp_dir')
seg_local_visualizer.dataset_meta = dict(
classes=('background', 'foreground'),
palette=[[120, 120, 120], [6, 230, 230]])
seg_local_visualizer.add_datasample(out_file, image,
gt_seg_data_sample)
# test out_file
seg_local_visualizer.add_datasample(out_file, image,
gt_seg_data_sample)
assert os.path.exists(
osp.join('temp_dir' + '/vis_data/vis_image', out_file + '_0.png'))
drawn_img = cv2.imread(
osp.join('temp_dir' + '/vis_data/vis_image', out_file + '_0.png'))
assert drawn_img.shape == (h, w, 3)
os.remove(
osp.join('temp_dir' + '/vis_data/vis_image', out_file + '_0.png'))
os.rmdir('temp_dir' + '/vis_data/vis_image')
# test gt_instances and pred_instances
pred_sem_seg_data = dict(data=torch.randint(0, num_class, (1, h, w)))
pred_sem_seg = PixelData(**pred_sem_seg_data)
pred_seg_data_sample = SegDataSample()
pred_seg_data_sample.pred_sem_seg = pred_sem_seg
seg_local_visualizer.add_datasample(out_file, image,
gt_seg_data_sample,
pred_seg_data_sample)
self._assert_image_and_shape(
osp.join('temp_dir' + '/vis_data/vis_image', out_file + '_0.png'),
(h, w * 2, 3))
seg_local_visualizer.add_datasample(
out_file,
image,
gt_seg_data_sample,
pred_seg_data_sample,
draw_gt=False)
self._assert_image_and_shape(
osp.join('temp_dir' + '/vis_data/vis_image', out_file + '_0.png'),
(h, w, 3))
seg_local_visualizer.add_datasample(
out_file,
image,
gt_seg_data_sample,
pred_seg_data_sample,
draw_pred=False)
self._assert_image_and_shape(
osp.join('temp_dir' + '/vis_data/vis_image', out_file + '_0.png'),
(h, w, 3))
os.rmdir('temp_dir/vis_data')
os.rmdir('temp_dir')
def test_cityscapes_add_datasample(self):
h = 128
w = 256
num_class = 19
out_file = 'out_file_cityscapes'
image = mmcv.imread(
osp.join(
osp.dirname(__file__),
'../data/pseudo_cityscapes_dataset/leftImg8bit/val/frankfurt/frankfurt_000000_000294_leftImg8bit.png' # noqa
),
'color')
sem_seg = mmcv.imread(
osp.join(
osp.dirname(__file__),
'../data/pseudo_cityscapes_dataset/gtFine/val/frankfurt/frankfurt_000000_000294_gtFine_labelTrainIds.png' # noqa
),
'unchanged')
sem_seg = torch.unsqueeze(torch.from_numpy(sem_seg), 0)
gt_sem_seg_data = dict(data=sem_seg)
gt_sem_seg = PixelData(**gt_sem_seg_data)
gt_seg_data_sample = SegDataSample()
gt_seg_data_sample.gt_sem_seg = gt_sem_seg
seg_local_visualizer = SegLocalVisualizer(
vis_backends=[dict(type='LocalVisBackend')], save_dir='temp_dir')
seg_local_visualizer.dataset_meta = dict(
classes=('road', 'sidewalk', 'building', 'wall', 'fence', 'pole',
'traffic light', 'traffic sign', 'vegetation', 'terrain',
'sky', 'person', 'rider', 'car', 'truck', 'bus', 'train',
'motorcycle', 'bicycle'),
palette=[[128, 64, 128], [244, 35, 232], [70, 70, 70],
[102, 102, 156], [190, 153, 153], [153, 153, 153],
[250, 170, 30], [220, 220, 0], [107, 142, 35],
[152, 251, 152], [70, 130, 180], [220, 20, 60],
[255, 0, 0], [0, 0, 142], [0, 0, 70], [0, 60, 100],
[0, 80, 100], [0, 0, 230], [119, 11, 32]])
seg_local_visualizer.add_datasample(out_file, image,
gt_seg_data_sample)
# test out_file
seg_local_visualizer.add_datasample(out_file, image,
gt_seg_data_sample)
assert os.path.exists(
osp.join('temp_dir' + '/vis_data/vis_image', out_file + '_0.png'))
drawn_img = cv2.imread(
osp.join('temp_dir' + '/vis_data/vis_image', out_file + '_0.png'))
assert drawn_img.shape == (h, w, 3)
os.remove(
osp.join('temp_dir' + '/vis_data/vis_image', out_file + '_0.png'))
os.rmdir('temp_dir/vis_data/vis_image')
# test gt_instances and pred_instances
pred_sem_seg_data = dict(data=torch.randint(0, num_class, (1, h, w)))
pred_sem_seg = PixelData(**pred_sem_seg_data)
pred_seg_data_sample = SegDataSample()
pred_seg_data_sample.pred_sem_seg = pred_sem_seg
seg_local_visualizer.add_datasample(out_file, image,
gt_seg_data_sample,
pred_seg_data_sample)
self._assert_image_and_shape(
osp.join('temp_dir' + '/vis_data/vis_image', out_file + '_0.png'),
(h, w * 2, 3))
seg_local_visualizer.add_datasample(
out_file,
image,
gt_seg_data_sample,
pred_seg_data_sample,
draw_gt=False)
self._assert_image_and_shape(
osp.join('temp_dir' + '/vis_data/vis_image', out_file + '_0.png'),
(h, w, 3))
seg_local_visualizer.add_datasample(
out_file,
image,
gt_seg_data_sample,
pred_seg_data_sample,
draw_pred=False)
self._assert_image_and_shape(
osp.join('temp_dir' + '/vis_data/vis_image', out_file + '_0.png'),
(h, w, 3))
os.rmdir('temp_dir/vis_data')
os.rmdir('temp_dir')
def _assert_image_and_shape(self, out_file, out_shape):
assert os.path.exists(out_file)
drawn_img = cv2.imread(out_file)
assert drawn_img.shape == out_shape
os.remove(out_file)
os.rmdir('temp_dir/vis_data/vis_image')