2022-08-31 20:54:15 +08:00
# Get started: Install and Run MMSeg
2020-12-23 10:36:49 +08:00
## Prerequisites
2020-07-07 20:52:19 +08:00
2022-08-31 20:54:15 +08:00
In this section we demonstrate how to prepare an environment with PyTorch.
2020-07-07 20:52:19 +08:00
2022-08-31 20:54:15 +08:00
MMSegmentation works on Linux, Windows and macOS. It requires Python 3.6+, CUDA 9.2+ and PyTorch 1.5+.
2020-07-07 20:52:19 +08:00
2022-08-31 20:54:15 +08:00
**Note:**
If you are experienced with PyTorch and have already installed it, just skip this part and jump to the [next section ](##installation ). Otherwise, you can follow these steps for the preparation.
2020-07-07 20:52:19 +08:00
2022-08-31 20:54:15 +08:00
**Step 0.** Download and install Miniconda from the [official website ](https://docs.conda.io/en/latest/miniconda.html ).
2020-07-07 20:52:19 +08:00
2022-08-31 20:54:15 +08:00
**Step 1.** Create a conda environment and activate it.
2020-07-07 20:52:19 +08:00
```shell
2022-08-31 20:54:15 +08:00
conda create --name openmmlab python=3.8 -y
conda activate openmmlab
2020-07-07 20:52:19 +08:00
```
2022-08-31 20:54:15 +08:00
**Step 2.** Install PyTorch following [official instructions ](https://pytorch.org/get-started/locally/ ), e.g.
2020-08-28 11:34:44 +08:00
2022-08-31 20:54:15 +08:00
On GPU platforms:
2020-07-07 20:52:19 +08:00
2020-07-13 20:54:32 +08:00
```shell
2022-08-31 20:54:15 +08:00
conda install pytorch torchvision -c pytorch
2020-07-07 20:52:19 +08:00
```
2022-08-31 20:54:15 +08:00
On CPU platforms:
2022-02-15 22:18:39 +08:00
```shell
2022-08-31 20:54:15 +08:00
conda install pytorch torchvision cpuonly -c pytorch
2022-02-15 22:18:39 +08:00
```
2022-08-31 20:54:15 +08:00
## Installation
2022-02-15 22:18:39 +08:00
2022-08-31 20:54:15 +08:00
We recommend that users follow our best practices to install MMSegmentation. However, the whole process is highly customizable. See [Customize Installation ](#customize-installation ) section for more information.
2020-08-28 11:34:44 +08:00
2022-08-31 20:54:15 +08:00
### Best Practices
2020-08-28 11:34:44 +08:00
2022-08-31 20:54:15 +08:00
**Step 0.** Install [MMCV ](https://github.com/open-mmlab/mmcv ) using [MIM ](https://github.com/open-mmlab/mim ).
2020-08-28 11:34:44 +08:00
```shell
2022-08-31 20:54:15 +08:00
pip install -U openmim
2022-10-12 16:20:30 +08:00
mim install mmengine
mim install "mmcv>=2.0.0rc1"
2020-08-28 11:34:44 +08:00
```
2022-08-31 20:54:15 +08:00
**Step 1.** Install MMSegmentation.
2020-08-28 11:34:44 +08:00
2022-08-31 20:54:15 +08:00
Case a: If you develop and run mmseg directly, install it from source:
2020-08-28 11:34:44 +08:00
```shell
2022-10-08 11:09:47 +08:00
git clone -b dev-1.x https://github.com/open-mmlab/mmsegmentation.git
2022-08-31 20:54:15 +08:00
cd mmsegmentation
pip install -v -e .
# '-v' means verbose, or more output
# '-e' means installing a project in editable mode,
# thus any local modifications made to the code will take effect without reinstallation.
2020-08-28 11:34:44 +08:00
```
2022-08-31 20:54:15 +08:00
Case b: If you use mmsegmentation as a dependency or third-party package, install it with pip:
2020-10-07 19:50:16 +08:00
2020-08-28 11:34:44 +08:00
```shell
2022-10-12 16:37:43 +08:00
pip install "mmsegmentation>=1.0.0rc0"
2020-08-28 11:34:44 +08:00
```
2022-08-31 20:54:15 +08:00
### Verify the installation
To verify whether MMSegmentation is installed correctly, we provide some sample codes to run an inference demo.
2020-08-28 11:34:44 +08:00
2022-08-31 20:54:15 +08:00
**Step 1.** We need to download config and checkpoint files.
2020-07-13 20:54:32 +08:00
```shell
2022-08-31 20:54:15 +08:00
mim download mmsegmentation --config pspnet_r50-d8_4xb2-40k_cityscapes-512x1024 --dest .
2020-07-07 20:52:19 +08:00
```
2022-08-31 20:54:15 +08:00
The downloading will take several seconds or more, depending on your network environment. When it is done, you will find two files `pspnet_r50-d8_4xb2-40k_cityscapes-512x1024.py` and `pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth` in your current folder.
2020-07-07 20:52:19 +08:00
2022-08-31 20:54:15 +08:00
**Step 2.** Verify the inference demo.
2020-07-07 20:52:19 +08:00
2022-08-31 20:54:15 +08:00
Option (a). If you install mmsegmentation from source, just run the following command.
2020-10-07 19:50:16 +08:00
2020-07-14 14:41:52 +08:00
```shell
2022-08-31 20:54:15 +08:00
python demo/image_demo.py demo/demo.png configs/pspnet/pspnet_r50-d8_4xb2-40k_cityscapes-512x1024.py pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth --device cuda:0 --out-file result.jpg
2020-07-14 14:41:52 +08:00
```
2022-08-31 20:54:15 +08:00
You will see a new image `result.jpg` on your current folder, where segmentation masks are covered on all objects.
2020-07-07 20:52:19 +08:00
2022-08-31 20:54:15 +08:00
Option (b). If you install mmsegmentation with pip, open you python interpreter and copy& paste the following codes.
2020-08-28 11:34:44 +08:00
2022-08-31 20:54:15 +08:00
```python
from mmseg.apis import inference_model, init_model, show_result_pyplot
from mmseg.utils import register_all_modules
import mmcv
2020-10-07 19:50:16 +08:00
2022-08-31 20:54:15 +08:00
register_all_modules()
config_file = 'pspnet_r50-d8_4xb2-40k_cityscapes-512x1024.py'
checkpoint_file = 'pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth'
2020-07-07 20:52:19 +08:00
2022-08-31 20:54:15 +08:00
# build the model from a config file and a checkpoint file
model = init_model(config_file, checkpoint_file, device='cuda:0')
2020-07-07 20:52:19 +08:00
2022-08-31 20:54:15 +08:00
# test a single image and show the results
img = 'demo/demo.png' # or img = mmcv.imread(img), which will only load it once
result = inference_model(model, img)
# visualize the results in a new window
show_result_pyplot(model, img, result, show=True)
# or save the visualization results to image files
# you can change the opacity of the painted segmentation map in (0, 1].
show_result_pyplot(model, img, result, show=True, out_file='result.jpg', opacity=0.5)
# test a video and show the results
video = mmcv.VideoReader('video.mp4')
for frame in video:
result = inference_segmentor(model, frame)
show_result_pyplot(model, result, wait_time=1)
```
2020-07-07 20:52:19 +08:00
2022-08-31 20:54:15 +08:00
You can modify the code above to test a single image or a video, both of these options can verify that the installation was successful.
2020-07-07 20:52:19 +08:00
2022-08-31 20:54:15 +08:00
### Customize Installation
2020-08-28 11:34:44 +08:00
2022-08-31 20:54:15 +08:00
#### CUDA versions
2020-10-07 19:50:16 +08:00
2022-08-31 20:54:15 +08:00
When installing PyTorch, you need to specify the version of CUDA. If you are not clear on which to choose, follow our recommendations:
2020-08-28 11:34:44 +08:00
2022-08-31 20:54:15 +08:00
- For Ampere-based NVIDIA GPUs, such as GeForce 30 series and NVIDIA A100, CUDA 11 is a must.
- For older NVIDIA GPUs, CUDA 11 is backward compatible, but CUDA 10.2 offers better compatibility and is more lightweight.
2020-08-28 11:34:44 +08:00
2022-08-31 20:54:15 +08:00
Please make sure the GPU driver satisfies the minimum version requirements. See [this table ](https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-major-component-versions__table-cuda-toolkit-driver-versions ) for more information.
2020-08-28 11:34:44 +08:00
2022-08-31 20:54:15 +08:00
**Note:**
Installing CUDA runtime libraries is enough if you follow our best practices, because no CUDA code will be compiled locally. However if you hope to compile MMCV from source or develop other CUDA operators, you need to install the complete CUDA toolkit from NVIDIA's [website ](https://developer.nvidia.com/cuda-downloads ), and its version should match the CUDA version of PyTorch. i.e., the specified version of cudatoolkit in `conda install` command.
2020-08-28 11:34:44 +08:00
2022-08-31 20:54:15 +08:00
#### Install MMCV without MIM
2020-12-23 10:36:49 +08:00
2022-08-31 20:54:15 +08:00
MMCV contains C++ and CUDA extensions, thus depending on PyTorch in a complex way. MIM solves such dependencies automatically and makes the installation easier. However, it is not a must.
2020-12-23 10:36:49 +08:00
2022-08-31 20:54:15 +08:00
To install MMCV with pip instead of MIM, please follow [MMCV installation guides ](https://mmcv.readthedocs.io/en/latest/get_started/installation.html ). This requires manually specifying a find-url based on PyTorch version and its CUDA version.
2020-12-23 10:36:49 +08:00
2022-08-31 20:54:15 +08:00
For example, the following command install mmcv==2.0.0rc1 built for PyTorch 1.10.x and CUDA 11.3.
2020-12-23 10:36:49 +08:00
```shell
2022-08-31 20:54:15 +08:00
pip install mmcv==2.0.0rc1 -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.10/index.html
2020-12-23 10:36:49 +08:00
```
2022-08-31 20:54:15 +08:00
#### Install on CPU-only platforms
2020-12-23 10:36:49 +08:00
2022-08-31 20:54:15 +08:00
MMSegmentation can be built for CPU only environment. In CPU mode you can train (requires MMCV-Lite version >= 2.0.0rc0), test or inference a model.
2020-12-23 10:36:49 +08:00
2022-08-31 20:54:15 +08:00
#### Install on Google Colab
2020-12-23 10:36:49 +08:00
2022-08-31 20:54:15 +08:00
[Google Colab ](https://research.google.com/ ) usually has PyTorch installed,
thus we only need to install MMCV and MMSegmentation with the following commands.
2020-12-23 10:36:49 +08:00
2022-08-31 20:54:15 +08:00
**Step 1.** Install [MMCV ](https://github.com/open-mmlab/mmcv ) using [MIM ](https://github.com/open-mmlab/mim ).
2020-12-23 10:36:49 +08:00
2022-08-31 20:54:15 +08:00
```shell
!pip3 install openmim
!mim install mmengine
2022-10-12 16:37:43 +08:00
!mim install "mmcv>=2.0.0rc1"
2020-12-23 10:36:49 +08:00
```
2022-08-31 20:54:15 +08:00
**Step 2.** Install MMSegmentation from the source.
2020-12-23 10:36:49 +08:00
```shell
2022-08-31 20:54:15 +08:00
!git clone https://github.com/open-mmlab/mmsegmentation.git
%cd mmsegmentation
!git checkout dev-1.x
!pip install -e .
2020-12-23 10:36:49 +08:00
```
2022-08-31 20:54:15 +08:00
**Step 3.** Verification.
2020-12-23 10:36:49 +08:00
2022-08-31 20:54:15 +08:00
```python
import mmseg
print(mmseg.__version__)
# Example output: 1.0.0rc0
2020-12-23 10:36:49 +08:00
```
2022-08-31 20:54:15 +08:00
**Note:**
Within Jupyter, the exclamation mark `!` is used to call external executables and `%cd` is a [magic command ](https://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-cd ) to change the current working directory of Python.
2021-12-09 15:14:30 +08:00
2022-08-31 20:54:15 +08:00
### Using MMSegmentation with Docker
We provide a [Dockerfile ](https://github.com/open-mmlab/mmsegmentation/blob/master/docker/Dockerfile ) to build an image. Ensure that your [docker version ](https://docs.docker.com/engine/install/ ) >=19.03.
2021-12-09 15:14:30 +08:00
```shell
2022-08-31 20:54:15 +08:00
# build an image with PyTorch 1.11, CUDA 11.3
# If you prefer other versions, just modified the Dockerfile
docker build -t mmsegmentation docker/
2021-12-09 15:14:30 +08:00
```
2022-08-31 20:54:15 +08:00
Run it with
2021-12-09 15:14:30 +08:00
```shell
2022-08-31 20:54:15 +08:00
docker run --gpus all --shm-size=8g -it -v {DATA_DIR}:/mmsegmentation/data mmsegmentation
2021-12-09 15:14:30 +08:00
```
2022-08-31 20:54:15 +08:00
## Trouble shooting
If you have some issues during the installation, please first view the [FAQ ](faq.md ) page.
You may [open an issue ](https://github.com/open-mmlab/mmsegmentation/issues/new/choose ) on GitHub if no solution is found.