2020-07-07 20:52:19 +08:00
|
|
|
# optimizer
|
|
|
|
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
|
2022-06-08 06:28:35 +00:00
|
|
|
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
2020-07-07 20:52:19 +08:00
|
|
|
# learning policy
|
|
|
|
lr_config = dict(policy='poly', power=0.9, min_lr=1e-4, by_epoch=False)
|
2022-06-08 06:28:35 +00:00
|
|
|
# training schedule for 160k
|
|
|
|
train_cfg = dict(
|
|
|
|
type='IterBasedTrainLoop', max_iters=160000, val_interval=16000)
|
|
|
|
val_cfg = dict(type='ValLoop')
|
|
|
|
test_cfg = dict(type='TestLoop')
|
2021-08-20 11:44:58 +08:00
|
|
|
evaluation = dict(interval=16000, metric='mIoU', pre_eval=True)
|
2022-06-08 06:28:35 +00:00
|
|
|
default_hooks = dict(
|
|
|
|
optimizer=dict(type='OptimizerHook', grad_clip=None),
|
|
|
|
timer=dict(type='IterTimerHook'),
|
|
|
|
logger=dict(type='LoggerHook', interval=50),
|
|
|
|
param_scheduler=dict(type='ParamSchedulerHook'),
|
|
|
|
checkpoint=dict(type='CheckpointHook', by_epoch=False, interval=16000),
|
|
|
|
sampler_seed=dict(type='DistSamplerSeedHook'),
|
|
|
|
)
|