# dataset settings
dataset_type = 'LoveDADataset'
data_root = 'data/loveDA'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
crop_size = (512, 512)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', reduce_zero_label=True),
dict(type='RandomResize', scale=(2048, 512), ratio_range=(0.5, 2.0)),
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
dict(type='RandomFlip', prob=0.5),
dict(type='PhotoMetricDistortion'),
dict(type='Pad', size=crop_size),
dict(type='PackSegInputs')
]
test_pipeline = [
dict(type='Resize', scale=(1024, 1024), keep_ratio=True),
train_dataloader = dict(
batch_size=4,
num_workers=4,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(
img_path='img_dir/train', seg_map_path='ann_dir/train'),
pipeline=train_pipeline))
val_dataloader = dict(
sampler=dict(type='DefaultSampler', shuffle=False),
data_prefix=dict(img_path='img_dir/val', seg_map_path='ann_dir/val'),
pipeline=test_pipeline))
test_dataloader = val_dataloader