mmsegmentation/mmseg/datasets/transforms/loading.py

446 lines
15 KiB
Python
Raw Normal View History

# Copyright (c) OpenMMLab. All rights reserved.
import warnings
from typing import Dict
2020-07-07 20:52:19 +08:00
import mmcv
import mmengine.fileio as fileio
2020-07-07 20:52:19 +08:00
import numpy as np
from mmcv.transforms import BaseTransform
from mmcv.transforms import LoadAnnotations as MMCV_LoadAnnotations
from mmcv.transforms import LoadImageFromFile
2020-07-07 20:52:19 +08:00
2022-05-10 20:15:20 +08:00
from mmseg.registry import TRANSFORMS
from mmseg.utils import datafrombytes
2020-07-07 20:52:19 +08:00
2022-05-10 20:15:20 +08:00
@TRANSFORMS.register_module()
class LoadAnnotations(MMCV_LoadAnnotations):
"""Load annotations for semantic segmentation provided by dataset.
2020-07-07 20:52:19 +08:00
The annotation format is as the following:
2020-07-07 20:52:19 +08:00
.. code-block:: python
2020-07-07 20:52:19 +08:00
{
# Filename of semantic segmentation ground truth file.
'seg_map_path': 'a/b/c'
}
2020-07-07 20:52:19 +08:00
After this module, the annotation has been changed to the format below:
2020-07-07 20:52:19 +08:00
.. code-block:: python
2020-07-07 20:52:19 +08:00
{
# in str
'seg_fields': List
# In uint8 type.
'gt_seg_map': np.ndarray (H, W)
}
2020-07-07 20:52:19 +08:00
Required Keys:
2020-07-07 20:52:19 +08:00
- seg_map_path (str): Path of semantic segmentation ground truth file.
2020-07-07 20:52:19 +08:00
Added Keys:
- seg_fields (List)
- gt_seg_map (np.uint8)
2020-07-07 20:52:19 +08:00
Args:
reduce_zero_label (bool, optional): Whether reduce all label value
by 1. Usually used for datasets where 0 is background label.
Defaults to None.
imdecode_backend (str): The image decoding backend type. The backend
argument for :func:``mmcv.imfrombytes``.
See :fun:``mmcv.imfrombytes`` for details.
Defaults to 'pillow'.
backend_args (dict): Arguments to instantiate a file backend.
See https://mmengine.readthedocs.io/en/latest/api/fileio.htm
for details. Defaults to ``dict(backend='local')``
Notes: mmcv>=2.0.0rc4, mmengine>=0.2.0 required.
2020-07-07 20:52:19 +08:00
"""
def __init__(
self,
reduce_zero_label=None,
backend_args=dict(backend='local'),
imdecode_backend='pillow',
) -> None:
super().__init__(
with_bbox=False,
with_label=False,
with_seg=True,
with_keypoints=False,
imdecode_backend=imdecode_backend,
backend_args=backend_args)
2020-07-07 20:52:19 +08:00
self.reduce_zero_label = reduce_zero_label
if self.reduce_zero_label is not None:
warnings.warn('`reduce_zero_label` will be deprecated, '
'if you would like to ignore the zero label, please '
'set `reduce_zero_label=True` when dataset '
'initialized')
2020-07-07 20:52:19 +08:00
self.imdecode_backend = imdecode_backend
def _load_seg_map(self, results: dict) -> None:
"""Private function to load semantic segmentation annotations.
2020-07-07 20:52:19 +08:00
Args:
results (dict): Result dict from :obj:``mmcv.BaseDataset``.
2020-07-07 20:52:19 +08:00
Returns:
dict: The dict contains loaded semantic segmentation annotations.
"""
img_bytes = fileio.get(
results['seg_map_path'], backend_args=self.backend_args)
2020-07-07 20:52:19 +08:00
gt_semantic_seg = mmcv.imfrombytes(
img_bytes, flag='unchanged',
backend=self.imdecode_backend).squeeze().astype(np.uint8)
2020-07-07 20:52:19 +08:00
# reduce zero_label
if self.reduce_zero_label is None:
self.reduce_zero_label = results['reduce_zero_label']
assert self.reduce_zero_label == results['reduce_zero_label'], \
'Initialize dataset with `reduce_zero_label` as ' \
f'{results["reduce_zero_label"]} but when load annotation ' \
f'the `reduce_zero_label` is {self.reduce_zero_label}'
2020-07-07 20:52:19 +08:00
if self.reduce_zero_label:
# avoid using underflow conversion
gt_semantic_seg[gt_semantic_seg == 0] = 255
gt_semantic_seg = gt_semantic_seg - 1
gt_semantic_seg[gt_semantic_seg == 254] = 255
[Fix] Switch order of `reduce_zero_label` and applying `label_map` in 1.x (#2517) This is an almost exact duplicate of #2500 (that was made to the `master` branch) now applied to the `1.x` branch. --- ## Motivation I want to fix a bug through this PR. The bug occurs when two options -- `reduce_zero_label=True`, and custom classes are used. `reduce_zero_label` remaps the GT seg labels by remapping the zero-class to 255 which is ignored. Conceptually, this should occur *before* the `label_map` is applied, which maps *already reduced labels*. However, currently, the `label_map` is applied before the zero label is reduced. ## Modification The modification is simple: - I've just interchanged the order of the two operations by moving a few lines from bottom to top. - I've added a test that passes when the fix is introduced, and fails on the original `master` branch. ## BC-breaking (Optional) I do not anticipate this change braking any backward-compatibility. ## Checklist - [x] Pre-commit or other linting tools are used to fix the potential lint issues. - _I've fixed all linting/pre-commit errors._ - [x] The modification is covered by complete unit tests. If not, please add more unit test to ensure the correctness. - _I've added a unit test._ - [x] If the modification has potential influence on downstream projects, this PR should be tested with downstream projects, like MMDet or MMDet3D. - _I don't think this change affects MMDet or MMDet3D._ - [x] The documentation has been modified accordingly, like docstring or example tutorials. - _This change fixes an existing bug and doesn't require modifying any documentation/docstring._
2023-01-30 12:17:15 +08:00
# modify if custom classes
if results.get('label_map', None) is not None:
# Add deep copy to solve bug of repeatedly
# replace `gt_semantic_seg`, which is reported in
# https://github.com/open-mmlab/mmsegmentation/pull/1445/
gt_semantic_seg_copy = gt_semantic_seg.copy()
for old_id, new_id in results['label_map'].items():
gt_semantic_seg[gt_semantic_seg_copy == old_id] = new_id
results['gt_seg_map'] = gt_semantic_seg
results['seg_fields'].append('gt_seg_map')
2020-07-07 20:52:19 +08:00
def __repr__(self) -> str:
2020-07-07 20:52:19 +08:00
repr_str = self.__class__.__name__
repr_str += f'(reduce_zero_label={self.reduce_zero_label}, '
repr_str += f"imdecode_backend='{self.imdecode_backend}', "
repr_str += f'backend_args={self.backend_args})'
2020-07-07 20:52:19 +08:00
return repr_str
@TRANSFORMS.register_module()
class LoadImageFromNDArray(LoadImageFromFile):
"""Load an image from ``results['img']``.
Similar with :obj:`LoadImageFromFile`, but the image has been loaded as
:obj:`np.ndarray` in ``results['img']``. Can be used when loading image
from webcam.
Required Keys:
- img
Modified Keys:
- img
- img_path
- img_shape
- ori_shape
Args:
to_float32 (bool): Whether to convert the loaded image to a float32
numpy array. If set to False, the loaded image is an uint8 array.
Defaults to False.
"""
def transform(self, results: dict) -> dict:
"""Transform function to add image meta information.
Args:
results (dict): Result dict with Webcam read image in
``results['img']``.
Returns:
dict: The dict contains loaded image and meta information.
"""
img = results['img']
if self.to_float32:
img = img.astype(np.float32)
results['img_path'] = None
results['img'] = img
results['img_shape'] = img.shape[:2]
results['ori_shape'] = img.shape[:2]
return results
@TRANSFORMS.register_module()
class LoadBiomedicalImageFromFile(BaseTransform):
"""Load an biomedical mage from file.
Required Keys:
- img_path
Added Keys:
- img (np.ndarray): Biomedical image with shape (N, Z, Y, X) by default,
N is the number of modalities, and data type is float32
if set to_float32 = True, or float64 if decode_backend is 'nifti' and
to_float32 is False.
- img_shape
- ori_shape
Args:
decode_backend (str): The data decoding backend type. Options are
'numpy'and 'nifti', and there is a convention that when backend is
'nifti' the axis of data loaded is XYZ, and when backend is
'numpy', the the axis is ZYX. The data will be transposed if the
backend is 'nifti'. Defaults to 'nifti'.
to_xyz (bool): Whether transpose data from Z, Y, X to X, Y, Z.
Defaults to False.
to_float32 (bool): Whether to convert the loaded image to a float32
numpy array. If set to False, the loaded image is an float64 array.
Defaults to True.
backend_args (dict): Arguments to instantiate a file backend.
See https://mmengine.readthedocs.io/en/latest/api/fileio.htm
for details. Defaults to ``dict(backend='local')``
Notes: mmcv>=2.0.0rc4, mmengine>=0.2.0 required.
"""
def __init__(
self,
decode_backend: str = 'nifti',
to_xyz: bool = False,
to_float32: bool = True,
backend_args: dict = dict(backend='local')
) -> None:
self.decode_backend = decode_backend
self.to_xyz = to_xyz
self.to_float32 = to_float32
self.backend_args = backend_args.copy()
def transform(self, results: Dict) -> Dict:
"""Functions to load image.
Args:
results (dict): Result dict from :obj:``mmcv.BaseDataset``.
Returns:
dict: The dict contains loaded image and meta information.
"""
filename = results['img_path']
data_bytes = fileio.get(filename, self.backend_args)
img = datafrombytes(data_bytes, backend=self.decode_backend)
if self.to_float32:
img = img.astype(np.float32)
if len(img.shape) == 3:
img = img[None, ...]
if self.decode_backend == 'nifti':
img = img.transpose(0, 3, 2, 1)
if self.to_xyz:
img = img.transpose(0, 3, 2, 1)
results['img'] = img
results['img_shape'] = img.shape[1:]
results['ori_shape'] = img.shape[1:]
return results
def __repr__(self):
repr_str = (f'{self.__class__.__name__}('
f"decode_backend='{self.decode_backend}', "
f'to_xyz={self.to_xyz}, '
f'to_float32={self.to_float32}, '
f'backend_args={self.backend_args})')
return repr_str
@TRANSFORMS.register_module()
class LoadBiomedicalAnnotation(BaseTransform):
"""Load ``seg_map`` annotation provided by biomedical dataset.
The annotation format is as the following:
.. code-block:: python
{
'gt_seg_map': np.ndarray (X, Y, Z) or (Z, Y, X)
}
Required Keys:
- seg_map_path
Added Keys:
- gt_seg_map (np.ndarray): Biomedical seg map with shape (Z, Y, X) by
default, and data type is float32 if set to_float32 = True, or
float64 if decode_backend is 'nifti' and to_float32 is False.
Args:
decode_backend (str): The data decoding backend type. Options are
'numpy'and 'nifti', and there is a convention that when backend is
'nifti' the axis of data loaded is XYZ, and when backend is
'numpy', the the axis is ZYX. The data will be transposed if the
backend is 'nifti'. Defaults to 'nifti'.
to_xyz (bool): Whether transpose data from Z, Y, X to X, Y, Z.
Defaults to False.
to_float32 (bool): Whether to convert the loaded seg map to a float32
numpy array. If set to False, the loaded image is an float64 array.
Defaults to True.
backend_args (dict): Arguments to instantiate a file backend.
See :class:`mmengine.fileio` for details.
Defaults to ``dict(backend='local')``.
Notes: mmcv>=2.0.0rc4, mmengine>=0.2.0 required.
"""
def __init__(
self,
decode_backend: str = 'nifti',
to_xyz: bool = False,
to_float32: bool = True,
backend_args: dict = dict(backend='local')
) -> None:
super().__init__()
self.decode_backend = decode_backend
self.to_xyz = to_xyz
self.to_float32 = to_float32
self.backend_args = backend_args.copy()
def transform(self, results: Dict) -> Dict:
"""Functions to load image.
Args:
results (dict): Result dict from :obj:``mmcv.BaseDataset``.
Returns:
dict: The dict contains loaded image and meta information.
"""
data_bytes = fileio.get(results['seg_map_path'], self.backend_args)
gt_seg_map = datafrombytes(data_bytes, backend=self.decode_backend)
if self.to_float32:
gt_seg_map = gt_seg_map.astype(np.float32)
if self.decode_backend == 'nifti':
gt_seg_map = gt_seg_map.transpose(2, 1, 0)
if self.to_xyz:
gt_seg_map = gt_seg_map.transpose(2, 1, 0)
results['gt_seg_map'] = gt_seg_map
return results
def __repr__(self):
repr_str = (f'{self.__class__.__name__}('
f"decode_backend='{self.decode_backend}', "
f'to_xyz={self.to_xyz}, '
f'to_float32={self.to_float32}, '
f'backend_args={self.backend_args})')
return repr_str
@TRANSFORMS.register_module()
class LoadBiomedicalData(BaseTransform):
"""Load an biomedical image and annotation from file.
The loading data format is as the following:
.. code-block:: python
{
'img': np.ndarray data[:-1, X, Y, Z]
'seg_map': np.ndarray data[-1, X, Y, Z]
}
Required Keys:
- img_path
Added Keys:
- img (np.ndarray): Biomedical image with shape (N, Z, Y, X) by default,
N is the number of modalities.
- gt_seg_map (np.ndarray, optional): Biomedical seg map with shape
(Z, Y, X) by default.
- img_shape
- ori_shape
Args:
with_seg (bool): Whether to parse and load the semantic segmentation
annotation. Defaults to False.
decode_backend (str): The data decoding backend type. Options are
'numpy'and 'nifti', and there is a convention that when backend is
'nifti' the axis of data loaded is XYZ, and when backend is
'numpy', the the axis is ZYX. The data will be transposed if the
backend is 'nifti'. Defaults to 'nifti'.
to_xyz (bool): Whether transpose data from Z, Y, X to X, Y, Z.
Defaults to False.
backend_args (dict): Arguments to instantiate a file backend.
See https://mmengine.readthedocs.io/en/latest/api/fileio.htm
for details. Defaults to ``dict(backend='local')``
Notes: mmcv>=2.0.0rc4, mmengine>=0.2.0 required.
"""
def __init__(
self,
with_seg=False,
decode_backend: str = 'numpy',
to_xyz: bool = False,
backend_args: dict = dict(backend='local')
) -> None: # noqa
self.with_seg = with_seg
self.decode_backend = decode_backend
self.to_xyz = to_xyz
self.backend_args = backend_args.copy()
def transform(self, results: Dict) -> Dict:
"""Functions to load image.
Args:
results (dict): Result dict from :obj:``mmcv.BaseDataset``.
Returns:
dict: The dict contains loaded image and meta information.
"""
data_bytes = fileio.get(results['img_path'], self.backend_args)
data = datafrombytes(data_bytes, backend=self.decode_backend)
# img is 4D data (N, X, Y, Z), N is the number of protocol
img = data[:-1, :]
if self.decode_backend == 'nifti':
img = img.transpose(0, 3, 2, 1)
if self.to_xyz:
img = img.transpose(0, 3, 2, 1)
results['img'] = img
results['img_shape'] = img.shape[1:]
results['ori_shape'] = img.shape[1:]
if self.with_seg:
gt_seg_map = data[-1, :]
if self.decode_backend == 'nifti':
gt_seg_map = gt_seg_map.transpose(2, 1, 0)
if self.to_xyz:
gt_seg_map = gt_seg_map.transpose(2, 1, 0)
results['gt_seg_map'] = gt_seg_map
return results
def __repr__(self) -> str:
repr_str = (f'{self.__class__.__name__}('
f'with_seg={self.with_seg}, '
f"decode_backend='{self.decode_backend}', "
f'to_xyz={self.to_xyz}, '
f'backend_args={self.backend_args})')
return repr_str