2023-02-07 16:36:36 +08:00
# NPU (HUAWEI Ascend)
## Usage
Please refer to the [building documentation of MMCV ](https://mmcv.readthedocs.io/en/latest/get_started/build.html#build-mmcv-full-on-ascend-npu-machine ) to install MMCV on NPU devices
Here we use 4 NPUs on your computer to train the model with the following command:
```shell
bash tools/dist_train.sh configs/deeplabv3/deeplabv3_r50-d8_4xb2-40k_cityscapes-512x1024.py 4
```
Also, you can use only one NPU to train the model with the following command:
```shell
python tools/train.py configs/deeplabv3/deeplabv3_r50-d8_4xb2-40k_cityscapes-512x1024.py
```
## Models Results
2023-02-16 17:43:18 +08:00
| Model | mIoU | Config | Download |
| :-----------------: | :---: | :----------------------------------------------------------------------------------------------------------------------------------------- | :------------------------------------------------------------------------------------------------------------------------------------------ |
| [deeplabv3 ](<> ) | 78.85 | [config ](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/deeplabv3/deeplabv3_r50-d8_4xb2-40k_cityscapes-512x1024.py ) | [log ](https://download.openmmlab.com/mmsegmentation/v0.5/device/npu/deeplabv3_r50-d8_4xb2-40k_cityscapes-512x1024_20230115_205626.json ) |
| [deeplabv3plus ](<> ) | 79.23 | [config ](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-40k_cityscapes-512x1024.py ) | [log ](https://download.openmmlab.com/mmsegmentation/v0.5/device/npu/deeplabv3plus_r50-d8_4xb2-40k_cityscapes-512x1024_20230116_043450.json ) |
| [hrnet ](<> ) | 78.1 | [config ](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/hrnet/fcn_hr18_4xb2-40k_cityscapes-512x1024.py ) | [log ](https://download.openmmlab.com/mmsegmentation/v0.5/device/npu/fcn_hr18_4xb2-40k_cityscapes-512x1024_20230116_215821.json ) |
| [fcn ](<> ) | 74.15 | [config ](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/fcn/fcn_r50-d8_4xb2-40k_cityscapes-512x1024.py ) | [log ](https://download.openmmlab.com/mmsegmentation/v0.5/device/npu/fcn_r50-d8_4xb2-40k_cityscapes-512x1024_20230111_083014.json ) |
| [icnet ](<> ) | 69.25 | [config ](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/icnet/icnet_r50-d8_4xb2-80k_cityscapes-832x832.py ) | [log ](https://download.openmmlab.com/mmsegmentation/v0.5/device/npu/icnet_r50-d8_4xb2-80k_cityscapes-832x832_20230119_002929.json ) |
| [pspnet ](<> ) | 77.21 | [config ](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/pspnet/pspnet_r50b-d8_4xb2-80k_cityscapes-512x1024.py ) | [log ](https://download.openmmlab.com/mmsegmentation/v0.5/device/npu/pspnet_r50b-d8_4xb2-80k_cityscapes-512x1024_20230114_042721.json ) |
| [unet ](<> ) | 68.86 | [config ](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/unet/unet-s5-d16_fcn_4xb4-160k_cityscapes-512x1024.py ) | [log ](https://download.openmmlab.com/mmsegmentation/v0.5/device/npu/unet-s5-d16_fcn_4xb4-160k_cityscapes-512x1024_20230129_224750.json ) |
| [upernet ](<> ) | 77.81 | [config ](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/upernet/upernet_r50_4xb2-40k_cityscapes-512x1024.py ) | [log ](https://download.openmmlab.com/mmsegmentation/v0.5/device/npu/upernet_r50_4xb2-40k_cityscapes-512x1024_20230129_014634.json ) |
| [apcnet ](<> ) | 78.02 | [config ](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/apcnet/apcnet_r50-d8_4xb2-40k_cityscapes-512x1024.py ) | [log ](https://download.openmmlab.com/mmsegmentation/v0.5/device/npu/apcnet_r50-d8_4xb2-40k_cityscapes-512x1024_20230209_212545.json ) |
| [bisenetv1 ](<> ) | 76.04 | [config ](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/bisenetv1/bisenetv1_r50-d32_4xb4-160k_cityscapes-1024x1024.py ) | [log ](https://download.openmmlab.com/mmsegmentation/v0.5/device/npu/bisenetv1_r50-d32_4xb4-160k_cityscapes-1024x1024_20230201_023946.json ) |
| [bisenetv2 ](<> ) | 72.44 | [config ](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/bisenetv2/bisenetv2_fcn_4xb4-amp-160k_cityscapes-1024x1024.py ) | [log ](https://download.openmmlab.com/mmsegmentation/v0.5/device/npu/bisenetv2_fcn_4xb4-amp-160k_cityscapes-1024x1024_20230205_215606.json ) |
2023-02-07 16:36:36 +08:00
**Notes:**
- If not specially marked, the results on NPU with amp are the basically same as those on the GPU with FP32.
**All above models are provided by Huawei Ascend group.**