177 lines
6.8 KiB
Python
177 lines
6.8 KiB
Python
|
import numpy as np
|
||
|
|
||
|
|
||
|
def intersect_and_union(pred_label, label, num_classes, ignore_index):
|
||
|
"""Calculate intersection and Union.
|
||
|
|
||
|
Args:
|
||
|
pred_label (ndarray): Prediction segmentation map
|
||
|
label (ndarray): Ground truth segmentation map
|
||
|
num_classes (int): Number of categories
|
||
|
ignore_index (int): Index that will be ignored in evaluation.
|
||
|
|
||
|
Returns:
|
||
|
ndarray: The intersection of prediction and ground truth histogram
|
||
|
on all classes
|
||
|
ndarray: The union of prediction and ground truth histogram on all
|
||
|
classes
|
||
|
ndarray: The prediction histogram on all classes.
|
||
|
ndarray: The ground truth histogram on all classes.
|
||
|
"""
|
||
|
|
||
|
mask = (label != ignore_index)
|
||
|
pred_label = pred_label[mask]
|
||
|
label = label[mask]
|
||
|
|
||
|
intersect = pred_label[pred_label == label]
|
||
|
area_intersect, _ = np.histogram(
|
||
|
intersect, bins=np.arange(num_classes + 1))
|
||
|
area_pred_label, _ = np.histogram(
|
||
|
pred_label, bins=np.arange(num_classes + 1))
|
||
|
area_label, _ = np.histogram(label, bins=np.arange(num_classes + 1))
|
||
|
area_union = area_pred_label + area_label - area_intersect
|
||
|
|
||
|
return area_intersect, area_union, area_pred_label, area_label
|
||
|
|
||
|
|
||
|
def total_intersect_and_union(results, gt_seg_maps, num_classes, ignore_index):
|
||
|
"""Calculate Total Intersection and Union.
|
||
|
|
||
|
Args:
|
||
|
results (list[ndarray]): List of prediction segmentation maps
|
||
|
gt_seg_maps (list[ndarray]): list of ground truth segmentation maps
|
||
|
num_classes (int): Number of categories
|
||
|
ignore_index (int): Index that will be ignored in evaluation.
|
||
|
|
||
|
Returns:
|
||
|
ndarray: The intersection of prediction and ground truth histogram
|
||
|
on all classes
|
||
|
ndarray: The union of prediction and ground truth histogram on all
|
||
|
classes
|
||
|
ndarray: The prediction histogram on all classes.
|
||
|
ndarray: The ground truth histogram on all classes.
|
||
|
"""
|
||
|
|
||
|
num_imgs = len(results)
|
||
|
assert len(gt_seg_maps) == num_imgs
|
||
|
total_area_intersect = np.zeros((num_classes, ), dtype=np.float)
|
||
|
total_area_union = np.zeros((num_classes, ), dtype=np.float)
|
||
|
total_area_pred_label = np.zeros((num_classes, ), dtype=np.float)
|
||
|
total_area_label = np.zeros((num_classes, ), dtype=np.float)
|
||
|
for i in range(num_imgs):
|
||
|
area_intersect, area_union, area_pred_label, area_label = \
|
||
|
intersect_and_union(results[i], gt_seg_maps[i], num_classes,
|
||
|
ignore_index=ignore_index)
|
||
|
total_area_intersect += area_intersect
|
||
|
total_area_union += area_union
|
||
|
total_area_pred_label += area_pred_label
|
||
|
total_area_label += area_label
|
||
|
return total_area_intersect, total_area_union, \
|
||
|
total_area_pred_label, total_area_label
|
||
|
|
||
|
|
||
|
def mean_iou(results, gt_seg_maps, num_classes, ignore_index, nan_to_num=None):
|
||
|
"""Calculate Mean Intersection and Union (mIoU)
|
||
|
|
||
|
Args:
|
||
|
results (list[ndarray]): List of prediction segmentation maps
|
||
|
gt_seg_maps (list[ndarray]): list of ground truth segmentation maps
|
||
|
num_classes (int): Number of categories
|
||
|
ignore_index (int): Index that will be ignored in evaluation.
|
||
|
nan_to_num (int, optional): If specified, NaN values will be replaced
|
||
|
by the numbers defined by the user. Default: None.
|
||
|
|
||
|
Returns:
|
||
|
float: Overall accuracy on all images.
|
||
|
ndarray: Per category accuracy, shape (num_classes, )
|
||
|
ndarray: Per category IoU, shape (num_classes, )
|
||
|
"""
|
||
|
|
||
|
all_acc, acc, iou = eval_metrics(
|
||
|
results=results,
|
||
|
gt_seg_maps=gt_seg_maps,
|
||
|
num_classes=num_classes,
|
||
|
ignore_index=ignore_index,
|
||
|
metrics=['mIoU'],
|
||
|
nan_to_num=nan_to_num)
|
||
|
return all_acc, acc, iou
|
||
|
|
||
|
|
||
|
def mean_dice(results,
|
||
|
gt_seg_maps,
|
||
|
num_classes,
|
||
|
ignore_index,
|
||
|
nan_to_num=None):
|
||
|
"""Calculate Mean Dice (mDice)
|
||
|
|
||
|
Args:
|
||
|
results (list[ndarray]): List of prediction segmentation maps
|
||
|
gt_seg_maps (list[ndarray]): list of ground truth segmentation maps
|
||
|
num_classes (int): Number of categories
|
||
|
ignore_index (int): Index that will be ignored in evaluation.
|
||
|
nan_to_num (int, optional): If specified, NaN values will be replaced
|
||
|
by the numbers defined by the user. Default: None.
|
||
|
|
||
|
Returns:
|
||
|
float: Overall accuracy on all images.
|
||
|
ndarray: Per category accuracy, shape (num_classes, )
|
||
|
ndarray: Per category dice, shape (num_classes, )
|
||
|
"""
|
||
|
|
||
|
all_acc, acc, dice = eval_metrics(
|
||
|
results=results,
|
||
|
gt_seg_maps=gt_seg_maps,
|
||
|
num_classes=num_classes,
|
||
|
ignore_index=ignore_index,
|
||
|
metrics=['mDice'],
|
||
|
nan_to_num=nan_to_num)
|
||
|
return all_acc, acc, dice
|
||
|
|
||
|
|
||
|
def eval_metrics(results,
|
||
|
gt_seg_maps,
|
||
|
num_classes,
|
||
|
ignore_index,
|
||
|
metrics=['mIoU'],
|
||
|
nan_to_num=None):
|
||
|
"""Calculate evaluation metrics
|
||
|
Args:
|
||
|
results (list[ndarray]): List of prediction segmentation maps
|
||
|
gt_seg_maps (list[ndarray]): list of ground truth segmentation maps
|
||
|
num_classes (int): Number of categories
|
||
|
ignore_index (int): Index that will be ignored in evaluation.
|
||
|
metrics (list[str] | str): Metrics to be evaluated, 'mIoU' and 'mDice'.
|
||
|
nan_to_num (int, optional): If specified, NaN values will be replaced
|
||
|
by the numbers defined by the user. Default: None.
|
||
|
Returns:
|
||
|
float: Overall accuracy on all images.
|
||
|
ndarray: Per category accuracy, shape (num_classes, )
|
||
|
ndarray: Per category evalution metrics, shape (num_classes, )
|
||
|
"""
|
||
|
|
||
|
if isinstance(metrics, str):
|
||
|
metrics = [metrics]
|
||
|
allowed_metrics = ['mIoU', 'mDice']
|
||
|
if not set(metrics).issubset(set(allowed_metrics)):
|
||
|
raise KeyError('metrics {} is not supported'.format(metrics))
|
||
|
total_area_intersect, total_area_union, total_area_pred_label, \
|
||
|
total_area_label = total_intersect_and_union(results, gt_seg_maps,
|
||
|
num_classes,
|
||
|
ignore_index=ignore_index)
|
||
|
all_acc = total_area_intersect.sum() / total_area_label.sum()
|
||
|
acc = total_area_intersect / total_area_label
|
||
|
ret_metrics = [all_acc, acc]
|
||
|
for metric in metrics:
|
||
|
if metric == 'mIoU':
|
||
|
iou = total_area_intersect / total_area_union
|
||
|
ret_metrics.append(iou)
|
||
|
elif metric == 'mDice':
|
||
|
dice = 2 * total_area_intersect / (
|
||
|
total_area_pred_label + total_area_label)
|
||
|
ret_metrics.append(dice)
|
||
|
if nan_to_num is not None:
|
||
|
ret_metrics = [
|
||
|
np.nan_to_num(metric, nan=nan_to_num) for metric in ret_metrics
|
||
|
]
|
||
|
return ret_metrics
|