mmsegmentation/configs/_base_/datasets/coco-stuff10k.py

58 lines
1.9 KiB
Python
Raw Normal View History

support coco stuff-10k/164k (#625) * support coco stuff-10k/164k * update docs * fix docs * update docs * fix import lints * Update docs/dataset_prepare.md * Update docs/dataset_prepare.md * Update tools/convert_datasets/coco_stuff164k.py * Update tools/convert_datasets/coco_stuff10k.py * Update tools/convert_datasets/coco_stuff10k.py * Update tools/convert_datasets/coco_stuff10k.py * Update tools/convert_datasets/coco_stuff10k.py * Update coco_stuff.py fix the description of the dataset * Update dataset_prepare.md fix the doc tree of coco stuff 10k * Update coco_stuff10k.py fix img_dir * Update coco_stuff.py fix descriptions * Update coco_stuff164k.py fix out_dir * Update coco_stuff10k.py fix save file name * Update coco_stuff.py fix seg_map_suffix * Update dataset_prepare.md fix -p * Update dataset_prepare.md fix doc tree * modify coco stuff convertor * Remove redundant code * fix 164k convert bug * remove redundant comment * add deeplabv3 configs and more iterations * replace shutil.move with shtil.copyfile * Update deeplabv3_r50-d8_512x512_4x4_80k_coco_stuff10k.py fix wrong config * Update deeplabv3_r101-d8_512x512_4x4_80k_coco_stuff164k.py fix wrong config * fix wrong configs * fix wrong configs * fix wrong path for coco stuff 10k * fix convert bugs * fix seg_filename bug * when nproc=0, use track progress * rename configs: coco_stuff --> coco-stuff * add coco-stuff 10k and 164k to README.md * update configs * add deeplabv3 benchmark * add pspnet benchmark * remove redundant comma Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn>
2021-09-22 20:48:08 +08:00
# dataset settings
dataset_type = 'COCOStuffDataset'
data_root = 'data/coco_stuff10k'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
crop_size = (512, 512)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', reduce_zero_label=True),
dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),
2022-05-27 21:52:49 +08:00
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
support coco stuff-10k/164k (#625) * support coco stuff-10k/164k * update docs * fix docs * update docs * fix import lints * Update docs/dataset_prepare.md * Update docs/dataset_prepare.md * Update tools/convert_datasets/coco_stuff164k.py * Update tools/convert_datasets/coco_stuff10k.py * Update tools/convert_datasets/coco_stuff10k.py * Update tools/convert_datasets/coco_stuff10k.py * Update tools/convert_datasets/coco_stuff10k.py * Update coco_stuff.py fix the description of the dataset * Update dataset_prepare.md fix the doc tree of coco stuff 10k * Update coco_stuff10k.py fix img_dir * Update coco_stuff.py fix descriptions * Update coco_stuff164k.py fix out_dir * Update coco_stuff10k.py fix save file name * Update coco_stuff.py fix seg_map_suffix * Update dataset_prepare.md fix -p * Update dataset_prepare.md fix doc tree * modify coco stuff convertor * Remove redundant code * fix 164k convert bug * remove redundant comment * add deeplabv3 configs and more iterations * replace shutil.move with shtil.copyfile * Update deeplabv3_r50-d8_512x512_4x4_80k_coco_stuff10k.py fix wrong config * Update deeplabv3_r101-d8_512x512_4x4_80k_coco_stuff164k.py fix wrong config * fix wrong configs * fix wrong configs * fix wrong path for coco stuff 10k * fix convert bugs * fix seg_filename bug * when nproc=0, use track progress * rename configs: coco_stuff --> coco-stuff * add coco-stuff 10k and 164k to README.md * update configs * add deeplabv3 benchmark * add pspnet benchmark * remove redundant comma Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn>
2021-09-22 20:48:08 +08:00
dict(type='RandomFlip', prob=0.5),
dict(type='PhotoMetricDistortion'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(2048, 512),
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
samples_per_gpu=4,
workers_per_gpu=4,
train=dict(
type=dataset_type,
data_root=data_root,
reduce_zero_label=True,
img_dir='images/train2014',
ann_dir='annotations/train2014',
pipeline=train_pipeline),
val=dict(
type=dataset_type,
data_root=data_root,
reduce_zero_label=True,
img_dir='images/test2014',
ann_dir='annotations/test2014',
pipeline=test_pipeline),
test=dict(
type=dataset_type,
data_root=data_root,
reduce_zero_label=True,
img_dir='images/test2014',
ann_dir='annotations/test2014',
pipeline=test_pipeline))