2020-07-07 20:52:19 +08:00
|
|
|
# optimizer
|
|
|
|
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
|
2022-06-16 13:24:19 +00:00
|
|
|
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer, clip_grad=None)
|
2020-07-07 20:52:19 +08:00
|
|
|
# learning policy
|
2022-06-08 09:25:00 +00:00
|
|
|
param_scheduler = [
|
|
|
|
dict(
|
|
|
|
type='PolyLR',
|
|
|
|
eta_min=1e-4,
|
|
|
|
power=0.9,
|
|
|
|
begin=0,
|
|
|
|
end=160000,
|
|
|
|
by_epoch=False)
|
|
|
|
]
|
2022-06-08 06:28:35 +00:00
|
|
|
# training schedule for 160k
|
|
|
|
train_cfg = dict(
|
|
|
|
type='IterBasedTrainLoop', max_iters=160000, val_interval=16000)
|
|
|
|
val_cfg = dict(type='ValLoop')
|
|
|
|
test_cfg = dict(type='TestLoop')
|
|
|
|
default_hooks = dict(
|
|
|
|
timer=dict(type='IterTimerHook'),
|
|
|
|
logger=dict(type='LoggerHook', interval=50),
|
|
|
|
param_scheduler=dict(type='ParamSchedulerHook'),
|
|
|
|
checkpoint=dict(type='CheckpointHook', by_epoch=False, interval=16000),
|
|
|
|
sampler_seed=dict(type='DistSamplerSeedHook'),
|
2022-08-09 23:33:04 +08:00
|
|
|
visualization=dict(type='SegVisualizationHook'))
|