mmsegmentation/mmseg/models/backbones/icnet.py

166 lines
5.7 KiB
Python
Raw Normal View History

import torch
import torch.nn as nn
from mmcv.cnn import ConvModule
from mmcv.runner import BaseModule
from mmseg.ops import resize
from ..builder import BACKBONES, build_backbone
from ..decode_heads.psp_head import PPM
@BACKBONES.register_module()
class ICNet(BaseModule):
"""ICNet for Real-Time Semantic Segmentation on High-Resolution Images.
This backbone is the implementation of
`ICNet <https://arxiv.org/abs/1704.08545>`_.
Args:
backbone_cfg (dict): Config dict to build backbone. Usually it is
ResNet but it can also be other backbones.
in_channels (int): The number of input image channels. Default: 3.
layer_channels (Sequence[int]): The numbers of feature channels at
layer 2 and layer 4 in ResNet. It can also be other backbones.
Default: (512, 2048).
light_branch_middle_channels (int): The number of channels of the
middle layer in light branch. Default: 32.
psp_out_channels (int): The number of channels of the output of PSP
module. Default: 512.
out_channels (Sequence[int]): The numbers of output feature channels
at each branches. Default: (64, 256, 256).
pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid
Module. Default: (1, 2, 3, 6).
conv_cfg (dict): Dictionary to construct and config conv layer.
Default: None.
norm_cfg (dict): Dictionary to construct and config norm layer.
Default: dict(type='BN').
act_cfg (dict): Dictionary to construct and config act layer.
Default: dict(type='ReLU').
align_corners (bool): align_corners argument of F.interpolate.
Default: False.
init_cfg (dict or list[dict], optional): Initialization config dict.
Default: None.
"""
def __init__(self,
backbone_cfg,
in_channels=3,
layer_channels=(512, 2048),
light_branch_middle_channels=32,
psp_out_channels=512,
out_channels=(64, 256, 256),
pool_scales=(1, 2, 3, 6),
conv_cfg=None,
norm_cfg=dict(type='BN', requires_grad=True),
act_cfg=dict(type='ReLU'),
align_corners=False,
init_cfg=None):
if backbone_cfg is None:
raise TypeError('backbone_cfg must be passed from config file!')
if init_cfg is None:
init_cfg = [
dict(type='Kaiming', mode='fan_out', layer='Conv2d'),
dict(type='Constant', val=1, layer='_BatchNorm'),
dict(type='Normal', mean=0.01, layer='Linear')
]
super(ICNet, self).__init__(init_cfg=init_cfg)
self.align_corners = align_corners
self.backbone = build_backbone(backbone_cfg)
# Note: Default `ceil_mode` is false in nn.MaxPool2d, set
# `ceil_mode=True` to keep information in the corner of feature map.
self.backbone.maxpool = nn.MaxPool2d(
kernel_size=3, stride=2, padding=1, ceil_mode=True)
self.psp_modules = PPM(
pool_scales=pool_scales,
in_channels=layer_channels[1],
channels=psp_out_channels,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
align_corners=align_corners)
self.psp_bottleneck = ConvModule(
layer_channels[1] + len(pool_scales) * psp_out_channels,
psp_out_channels,
3,
padding=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
self.conv_sub1 = nn.Sequential(
ConvModule(
in_channels=in_channels,
out_channels=light_branch_middle_channels,
kernel_size=3,
stride=2,
padding=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg),
ConvModule(
in_channels=light_branch_middle_channels,
out_channels=light_branch_middle_channels,
kernel_size=3,
stride=2,
padding=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg),
ConvModule(
in_channels=light_branch_middle_channels,
out_channels=out_channels[0],
kernel_size=3,
stride=2,
padding=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg))
self.conv_sub2 = ConvModule(
layer_channels[0],
out_channels[1],
1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg)
self.conv_sub4 = ConvModule(
psp_out_channels,
out_channels[2],
1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg)
def forward(self, x):
output = []
# sub 1
output.append(self.conv_sub1(x))
# sub 2
x = resize(
x,
scale_factor=0.5,
mode='bilinear',
align_corners=self.align_corners)
x = self.backbone.stem(x)
x = self.backbone.maxpool(x)
x = self.backbone.layer1(x)
x = self.backbone.layer2(x)
output.append(self.conv_sub2(x))
# sub 4
x = resize(
x,
scale_factor=0.5,
mode='bilinear',
align_corners=self.align_corners)
x = self.backbone.layer3(x)
x = self.backbone.layer4(x)
psp_outs = self.psp_modules(x) + [x]
psp_outs = torch.cat(psp_outs, dim=1)
x = self.psp_bottleneck(psp_outs)
output.append(self.conv_sub4(x))
return output