mmsegmentation/docs/en/advanced_guides/add_dataset.md

157 lines
4.3 KiB
Markdown
Raw Normal View History

# Add New Datasets
2020-07-07 20:52:19 +08:00
## Customize datasets by reorganizing data
The simplest way is to convert your dataset to organize your data into folders.
An example of file structure is as followed.
```none
2020-07-07 20:52:19 +08:00
├── data
│ ├── my_dataset
│ │ ├── img_dir
│ │ │ ├── train
│ │ │ │ ├── xxx{img_suffix}
│ │ │ │ ├── yyy{img_suffix}
│ │ │ │ ├── zzz{img_suffix}
│ │ │ ├── val
│ │ ├── ann_dir
│ │ │ ├── train
│ │ │ │ ├── xxx{seg_map_suffix}
│ │ │ │ ├── yyy{seg_map_suffix}
│ │ │ │ ├── zzz{seg_map_suffix}
│ │ │ ├── val
```
2020-07-07 20:52:19 +08:00
A training pair will consist of the files with same suffix in img_dir/ann_dir.
If `split` argument is given, only part of the files in img_dir/ann_dir will be loaded.
We may specify the prefix of files we would like to be included in the split txt.
More specifically, for a split txt like following,
```none
2020-07-07 20:52:19 +08:00
xxx
zzz
```
2020-07-07 20:52:19 +08:00
Only
`data/my_dataset/img_dir/train/xxx{img_suffix}`,
`data/my_dataset/img_dir/train/zzz{img_suffix}`,
`data/my_dataset/ann_dir/train/xxx{seg_map_suffix}`,
`data/my_dataset/ann_dir/train/zzz{seg_map_suffix}` will be loaded.
:::{note}
The annotations are images of shape (H, W), the value pixel should fall in range `[0, num_classes - 1]`.
2020-08-23 14:42:07 +08:00
You may use `'P'` mode of [pillow](https://pillow.readthedocs.io/en/stable/handbook/concepts.html#palette) to create your annotation image with color.
:::
2020-08-23 14:42:07 +08:00
2020-07-07 20:52:19 +08:00
## Customize datasets by mixing dataset
MMSegmentation also supports to mix dataset for training.
Currently it supports to concat, repeat and multi-image mix datasets.
2020-07-07 20:52:19 +08:00
### Repeat dataset
We use `RepeatDataset` as wrapper to repeat the dataset.
For example, suppose the original dataset is `Dataset_A`, to repeat it, the config looks like the following
2020-07-07 20:52:19 +08:00
```python
dataset_A_train = dict(
type='RepeatDataset',
times=N,
dataset=dict( # This is the original config of Dataset_A
type='Dataset_A',
...
pipeline=train_pipeline
)
)
```
### Concatenate dataset
In case the dataset you want to concatenate is different, you can concatenate the dataset configs like the following.
2022-07-05 15:58:48 +08:00
```python
dataset_A_train = dict()
dataset_B_train = dict()
concatenate_dataset = dict(
type='ConcatDataset',
datasets=[dataset_A_train, dataset_B_train])
```
2020-07-07 20:52:19 +08:00
A more complex example that repeats `Dataset_A` and `Dataset_B` by N and M times, respectively, and then concatenates the repeated datasets is as the following.
```python
dataset_A_train = dict(
type='RepeatDataset',
times=N,
dataset=dict(
type='Dataset_A',
...
pipeline=train_pipeline
)
)
dataset_A_val = dict(
...
pipeline=test_pipeline
)
dataset_A_test = dict(
...
pipeline=test_pipeline
)
dataset_B_train = dict(
type='RepeatDataset',
times=M,
dataset=dict(
type='Dataset_B',
...
pipeline=train_pipeline
)
)
train_dataloader = dict(
dataset=dict('ConcatDataset', datasets=[dataset_A_train, dataset_B_train]))
val_dataloader = dict(dataset=dataset_A_val)
test_dataloader = dict(dataset=dataset_A_test)
2020-07-07 20:52:19 +08:00
```
You can refer base dataset [tutorial](https://mmengine.readthedocs.io/en/latest/advanced_tutorials/basedataset.html) from mmengine for more details
### Multi-image Mix Dataset
We use `MultiImageMixDataset` as a wrapper to mix images from multiple datasets.
`MultiImageMixDataset` can be used by multiple images mixed data augmentation
like mosaic and mixup.
An example of using `MultiImageMixDataset` with `Mosaic` data augmentation:
```python
train_pipeline = [
dict(type='RandomMosaic', prob=1),
dict(type='Resize', img_scale=(1024, 512), keep_ratio=True),
dict(type='RandomFlip', prob=0.5),
dict(type='PackSegInputs')
]
train_dataset = dict(
type='MultiImageMixDataset',
dataset=dict(
classes=classes,
palette=palette,
type=dataset_type,
reduce_zero_label=False,
img_dir=data_root + "images/train",
ann_dir=data_root + "annotations/train",
pipeline=[
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations'),
]
),
pipeline=train_pipeline
)
```