mmsegmentation/docs_zh-CN/inference.md

100 lines
4.7 KiB
Markdown
Raw Normal View History

[Doc] Add Chinese Documentation (#666) * Add chinese doc base (#593) * [Doc] Add Chinese doc for useful_tools_md (#642) * get_started_docs_zh * inference_zh.md * train_zh.md * get_started_zh.md * train_zh.md * get_started_zh * fix nospace between ZH and ENG * change README_zh-CN link * checkout space again * checkout space again * checkout space again * pipeline * cus_model * cus_model * cus_model * runtime_md * dataset_prepare * useful_tools * refine * Update useful_tools.md * Update useful_tools.md Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn> * [Doc] Add Chinese doc for get_started (#615) * get_started_docs_zh * inference_zh.md * train_zh.md * get_started_zh.md * train_zh.md * get_started_zh * fix nospace between ZH and ENG * change README_zh-CN link * checkout space again * checkout space again * checkout space again * get_started_md * refine_get_started_md * [Doc] Add Chinese doc for tutorial03_tutorial_datapipeline_md (#629) * get_started_docs_zh * inference_zh.md * train_zh.md * get_started_zh.md * train_zh.md * get_started_zh * fix nospace between ZH and ENG * change README_zh-CN link * checkout space again * checkout space again * checkout space again * pipeline * refine * Update data_pipeline.md Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn> * [Doc] Add Chinese doc for tutorials04_customized_models_md (#630) * get_started_docs_zh * inference_zh.md * train_zh.md * get_started_zh.md * train_zh.md * get_started_zh * fix nospace between ZH and ENG * change README_zh-CN link * checkout space again * checkout space again * checkout space again * pipeline * cus_model * cus_model * cus_model * refine * refine * Update customize_models.md Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn> * [Doc] Add Chinese doc for dataset_prepare_md (#640) * get_started_docs_zh * inference_zh.md * train_zh.md * get_started_zh.md * train_zh.md * get_started_zh * fix nospace between ZH and ENG * change README_zh-CN link * checkout space again * checkout space again * checkout space again * pipeline * cus_model * cus_model * cus_model * runtime_md * dataset_prepare * Update dataset_prepare.md Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn> * [Doc] Add Chinese doc for tutorials05_training_tricks_md (#631) * get_started_docs_zh * inference_zh.md * train_zh.md * get_started_zh.md * train_zh.md * get_started_zh * fix nospace between ZH and ENG * change README_zh-CN link * checkout space again * checkout space again * checkout space again * pipeline * cus_model * cus_model * cus_model * traning tricks md * traning tricks md * refine * refine * refine * Update training_tricks.md Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn> * [Doc] Add Chinese doc for tutorials06_customized_runtime_md (#637) * get_started_docs_zh * inference_zh.md * train_zh.md * get_started_zh.md * train_zh.md * get_started_zh * fix nospace between ZH and ENG * change README_zh-CN link * checkout space again * checkout space again * checkout space again * pipeline * cus_model * cus_model * cus_model * runtime_md * Update customize_runtime.md Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn> * [Doc] Add Chinese doc for tutorials01_config_md (#628) * get_started_docs_zh * inference_zh.md * train_zh.md * get_started_zh.md * train_zh.md * get_started_zh * fix nospace between ZH and ENG * change README_zh-CN link * checkout space again * checkout space again * checkout space again * new_config_md * new_config_md1 * new_config_md1 * refine * refine * Update config.md Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn> * [Doc] Add Chinese for modelzoo (#597) * [Doc] Add Chinese for modelzoo * add missing * [Doc] Add Chinese doc for tutorial02_customized_dataset_md (#620) * get_started_docs_zh * inference_zh.md * train_zh.md * get_started_zh.md * train_zh.md * get_started_zh * fix nospace between ZH and ENG * change README_zh-CN link * checkout space again * checkout space again * checkout space again * tutorial_customized_dataset * refine * Update customize_datasets.md * fixconflict Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn> * [Doc] Add Chinese doc for train.md (#616) * get_started_docs_zh * inference_zh.md * train_zh.md * get_started_zh.md * train_zh.md * get_started_zh * fix nospace between ZH and ENG * change README_zh-CN link * checkout space again * checkout space again * checkout space again * train_md * refine * refine_last * refine_last * refine_last * refine_last * refine_last * temp * refine_last * qwe Co-authored-by: yuanzhang <yuanzhang@yuanzhangdeMacBook-Pro.local> * [Doc] Add Chinese doc for inference.md (#617) * get_started_docs_zh * inference_zh.md * train_zh.md * get_started_zh.md * train_zh.md * get_started_zh * fix nospace between ZH and ENG * change README_zh-CN link * checkout space again * checkout space again * checkout space again * inference_zh_md * Update docs_zh-CN/inference.md Directly delete this sentence? Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn> * qwe * temp * qw * Update docs_zh-CN/inference.md * Update docs_zh-CN/inference.md * Update docs_zh-CN/inference.md * Update docs_zh-CN/inference.md * Update docs_zh-CN/inference.md * Update inference.md Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn> * fixed some dir * fixed typo Co-authored-by: MengzhangLI <mcmong@pku.edu.cn> Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn> Co-authored-by: yuanzhang <yuanzhang@yuanzhangdeMacBook-Pro.local>
2021-07-03 08:54:32 -07:00
## 使用预训练模型推理
我们提供测试脚本来评估完整数据集Cityscapes, PASCAL VOC, ADE20k 等) 上的结果,同时为了使其他项目的整合更容易,也提供一些高级 API。
### 测试一个数据集
- 单卡 GPU
- 单节点多卡 GPU
- 多节点
您可以使用以下命令来测试一个数据集。
```shell
# 单卡 GPU 测试
python tools/test.py ${配置文件} ${检查点文件} [--out ${结果文件}] [--eval ${评估指标}] [--show]
# 多卡GPU 测试
./tools/dist_test.sh ${配置文件} ${检查点文件} ${GPU数目} [--out ${结果文件}] [--eval ${评估指标}]
```
可选参数:
- `RESULT_FILE`: pickle 格式的输出结果的文件名,如果不专门指定,结果将不会被专门保存成文件。
- `EVAL_METRICS`: 在结果里将被评估的指标。这主要取决于数据集, `mIoU` 对于所有数据集都可获得,像 Cityscapes 数据集可以通过 `cityscapes` 命令来专门评估,就像标准的 `mIoU`一样。
- `--show`: 如果被指定,分割结果将会在一张图像里画出来并且在另一个窗口展示。它仅仅是用来调试与可视化,并且仅针对单卡 GPU 测试。请确认 GUI 在您的环境里可用,否则您也许会遇到报错 `cannot connect to X server`
- `--show-dir`: 如果被指定分割结果将会在一张图像里画出来并且保存在指定文件夹里。它仅仅是用来调试与可视化并且仅针对单卡GPU测试。使用该参数时您的环境不需要 GUI。
- `--eval-options`: 评估时的可选参数,当设置 `efficient_test=True` 时,它将会保存中间结果至本地文件里以节约 CPU 内存。请确认您本地硬盘有足够的存储空间大于20GB
例子:
假设您已经下载检查点文件至文件夹 `checkpoints/` 里。
1. 测试 PSPNet 并可视化结果。按下任何键会进行到下一张图。
```shell
python tools/test.py configs/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes.py \
checkpoints/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth \
--show
```
2. 测试 PSPNet 并保存画出的图以便于之后的可视化。
```shell
python tools/test.py configs/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes.py \
checkpoints/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth \
--show-dir psp_r50_512x1024_40ki_cityscapes_results
```
3. 在数据集 PASCAL VOC (不保存测试结果) 上测试 PSPNet 并评估 mIoU。
```shell
python tools/test.py configs/pspnet/pspnet_r50-d8_512x1024_20k_voc12aug.py \
checkpoints/pspnet_r50-d8_512x1024_20k_voc12aug_20200605_003338-c57ef100.pth \
--eval mAP
```
4. 使用4卡 GPU 测试 PSPNet并且在标准 mIoU 和 cityscapes 指标里评估模型。
```shell
./tools/dist_test.sh configs/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes.py \
checkpoints/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth \
4 --out results.pkl --eval mIoU cityscapes
```
注意:在 cityscapes mIoU 和我们的 mIoU 指标会有一些差异 (~0.1%) 。因为 cityscapes 默认是根据类别样本数的多少进行加权平均,而我们对所有的数据集都是采取直接平均的方法来得到 mIoU。
5. 在 cityscapes 数据集上4卡 GPU 测试 PSPNet 并生成 png 文件以便提交给官方评估服务器。
首先,在配置文件里添加内容: `configs/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes.py`
```python
data = dict(
test=dict(
img_dir='leftImg8bit/test',
ann_dir='gtFine/test'))
```
随后,进行测试。
```shell
./tools/dist_test.sh configs/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes.py \
checkpoints/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth \
4 --format-only --eval-options "imgfile_prefix=./pspnet_test_results"
```
您会在文件夹 `./pspnet_test_results` 里得到生成的 png 文件。
您也许可以运行 `zip -r results.zip pspnet_test_results/` 并提交 zip 文件给 [evaluation server](https://www.cityscapes-dataset.com/submit/)。
6. 在 Cityscapes 数据集上使用 CPU 高效内存选项来测试 DeeplabV3+ `mIoU` 指标 (没有保存测试结果)。
```shell
python tools/test.py \
configs/deeplabv3plus/deeplabv3plus_r18-d8_512x1024_80k_cityscapes.py \
deeplabv3plus_r18-d8_512x1024_80k_cityscapes_20201226_080942-cff257fe.pth \
--eval-options efficient_test=True \
--eval mIoU
```
使用 ```pmap``` 可查看 CPU 内存情况, ```efficient_test=True``` 会使用约 2.25GB 的 CPU 内存, ```efficient_test=False``` 会使用约 11.06GB 的 CPU 内存。 这个可选参数可以节约很多 CPU 内存。