63 lines
2.3 KiB
Python
63 lines
2.3 KiB
Python
|
"""Modified from https://github.com/rwightman/pytorch-image-
|
||
|
models/blob/master/timm/models/layers/drop.py."""
|
||
|
|
||
|
import math
|
||
|
import warnings
|
||
|
|
||
|
import torch
|
||
|
|
||
|
|
||
|
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
|
||
|
"""Reference: https://people.sc.fsu.edu/~jburkardt/presentations
|
||
|
/truncated_normal.pdf"""
|
||
|
|
||
|
def norm_cdf(x):
|
||
|
# Computes standard normal cumulative distribution function
|
||
|
return (1. + math.erf(x / math.sqrt(2.))) / 2.
|
||
|
|
||
|
if (mean < a - 2 * std) or (mean > b + 2 * std):
|
||
|
warnings.warn(
|
||
|
'mean is more than 2 std from [a, b] in nn.init.trunc_normal_. '
|
||
|
'The distribution of values may be incorrect.',
|
||
|
stacklevel=2)
|
||
|
|
||
|
with torch.no_grad():
|
||
|
# Values are generated by using a truncated uniform distribution and
|
||
|
# then using the inverse CDF for the normal distribution.
|
||
|
# Get upper and lower cdf values
|
||
|
lower_bound = norm_cdf((a - mean) / std)
|
||
|
upper_bound = norm_cdf((b - mean) / std)
|
||
|
|
||
|
# Uniformly fill tensor with values from [l, u], then translate to
|
||
|
# [2l-1, 2u-1].
|
||
|
tensor.uniform_(2 * lower_bound - 1, 2 * upper_bound - 1)
|
||
|
|
||
|
# Use inverse cdf transform for normal distribution to get truncated
|
||
|
# standard normal
|
||
|
tensor.erfinv_()
|
||
|
|
||
|
# Transform to proper mean, std
|
||
|
tensor.mul_(std * math.sqrt(2.))
|
||
|
tensor.add_(mean)
|
||
|
|
||
|
# Clamp to ensure it's in the proper range
|
||
|
tensor.clamp_(min=a, max=b)
|
||
|
return tensor
|
||
|
|
||
|
|
||
|
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
|
||
|
r"""Fills the input Tensor with values drawn from a truncated
|
||
|
normal distribution. The values are effectively drawn from the
|
||
|
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
|
||
|
with values outside :math:`[a, b]` redrawn until they are within
|
||
|
the bounds. The method used for generating the random values works
|
||
|
best when :math:`a \leq \text{mean} \leq b`.
|
||
|
Args:
|
||
|
tensor (``torch.Tensor``): an n-dimensional `torch.Tensor`
|
||
|
mean (float): the mean of the normal distribution
|
||
|
std (float): the standard deviation of the normal distribution
|
||
|
a (float): the minimum cutoff value
|
||
|
b (float): the maximum cutoff value
|
||
|
"""
|
||
|
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
|