mmsegmentation/docs/zh_cn/advanced_guides/datasets.md

364 lines
14 KiB
Markdown
Raw Normal View History

# 数据集
在 MMSegmentation 算法库中, 所有 Dataset 类的功能有两个: 加载[预处理](../user_guides/2_dataset_prepare.md) 之后的数据集的信息, 和将数据送入[数据集变换流水线](https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/datasets/basesegdataset.py#L141) 中, 进行[数据变换操作](./transforms.md). 加载的数据集信息包括两类: 元信息 (meta information), 数据集本身的信息, 例如数据集总共的类别, 和它们对应调色盘信息: 数据信息 (data information) 是指每组数据中图片和对应标签的路径. 下文中介绍了 MMSegmentation 1.x 中数据集的常用接口, 和 mmseg 数据集基类中数据信息加载与修改数据集类别的逻辑, 以及数据集与数据变换流水线 (pipeline) 的关系.
## 常用接口
以 Cityscapes 为例, 介绍数据集常用接口. 如需运行以下示例, 请在当前工作目录下的 `data` 目录下载并[预处理](../user_guides/2_dataset_prepare.md#cityscapes) Cityscapes 数据集.
实例化 Cityscapes 训练数据集:
```python
from mmengine.registry import init_default_scope
from mmseg.datasets import CityscapesDataset
init_default_scope('mmseg')
data_root = 'data/cityscapes/'
data_prefix=dict(img_path='leftImg8bit/train', seg_map_path='gtFine/train')
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations'),
dict(type='RandomCrop', crop_size=(512, 1024), cat_max_ratio=0.75),
dict(type='RandomFlip', prob=0.5),
dict(type='PackSegInputs')
]
dataset = CityscapesDataset(data_root=data_root, data_prefix=data_prefix, test_mode=False, pipeline=train_pipeline)
```
查看训练数据集长度:
```python
print(len(dataset))
2975
```
获取数据信息, 数据信息的类型是一个字典, 包括 `'img_path'` 字段的存放图片的路径和 `'seg_map_path'` 字段存放分割标注的路径, 以及标签重映射的字段 `'label_map'``'reduce_zero_label'`(主要功能在下文中介绍), 还有存放已加载标签字段 `'seg_fields'`, 和当前样本的索引字段 `'sample_idx'`.
```python
# 获取数据集中第一组样本的数据信息
print(dataset.get_data_info(0))
{'img_path': 'data/cityscapes/leftImg8bit/train/aachen/aachen_000000_000019_leftImg8bit.png',
'seg_map_path': 'data/cityscapes/gtFine/train/aachen/aachen_000000_000019_gtFine_labelTrainIds.png',
'label_map': None,
'reduce_zero_label': False,
'seg_fields': [],
'sample_idx': 0}
```
获取数据集元信息, MMSegmentation 的数据集元信息的类型同样是一个字典, 包括 `'classes'` 字段存放数据集类别, `'palette'` 存放数据集类别对应的可视化时调色盘的颜色, 以及标签重映射的字段 `'label_map'``'reduce_zero_label'`.
```python
print(dataset.metainfo)
{'classes': ('road',
'sidewalk',
'building',
'wall',
'fence',
'pole',
'traffic light',
'traffic sign',
'vegetation',
'terrain',
'sky',
'person',
'rider',
'car',
'truck',
'bus',
'train',
'motorcycle',
'bicycle'),
'palette': [[128, 64, 128],
[244, 35, 232],
[70, 70, 70],
[102, 102, 156],
[190, 153, 153],
[153, 153, 153],
[250, 170, 30],
[220, 220, 0],
[107, 142, 35],
[152, 251, 152],
[70, 130, 180],
[220, 20, 60],
[255, 0, 0],
[0, 0, 142],
[0, 0, 70],
[0, 60, 100],
[0, 80, 100],
[0, 0, 230],
[119, 11, 32]],
'label_map': None,
'reduce_zero_label': False}
```
数据集 `__getitem__` 方法的返回值, 是经过数据增强的样本数据的输出, 同样也是一个字典, 包括两个字段, `'inputs'` 字段是当前样本经过数据增强操作的图像, 类型为 torch.Tensor, `'data_samples'` 字段存放的数据类型是 MMSegmentation 1.x 新添加的数据结构 [`Segdatasample`](./structures.md), 其中`gt_sem_seg` 字段是经过数据增强的标签数据.
```python
print(dataset[0])
{'inputs': tensor([[[131, 130, 130, ..., 23, 23, 23],
[132, 132, 132, ..., 23, 22, 23],
[134, 133, 133, ..., 23, 23, 23],
...,
[ 66, 67, 67, ..., 71, 71, 71],
[ 66, 67, 66, ..., 68, 68, 68],
[ 67, 67, 66, ..., 70, 70, 70]],
[[143, 143, 142, ..., 28, 28, 29],
[145, 145, 145, ..., 28, 28, 29],
[145, 145, 145, ..., 27, 28, 29],
...,
[ 75, 75, 76, ..., 80, 81, 81],
[ 75, 76, 75, ..., 80, 80, 80],
[ 77, 76, 76, ..., 82, 82, 82]],
[[126, 125, 126, ..., 21, 21, 22],
[127, 127, 128, ..., 21, 21, 22],
[127, 127, 126, ..., 21, 21, 22],
...,
[ 63, 63, 64, ..., 69, 69, 70],
[ 64, 65, 64, ..., 69, 69, 69],
[ 65, 66, 66, ..., 72, 71, 71]]], dtype=torch.uint8),
'data_samples': <SegDataSample(
META INFORMATION
img_path: 'data/cityscapes/leftImg8bit/train/aachen/aachen_000000_000019_leftImg8bit.png'
seg_map_path: 'data/cityscapes/gtFine/train/aachen/aachen_000000_000019_gtFine_labelTrainIds.png'
img_shape: (512, 1024, 3)
flip_direction: None
ori_shape: (1024, 2048)
flip: False
DATA FIELDS
gt_sem_seg: <PixelData(
META INFORMATION
DATA FIELDS
data: tensor([[[2, 2, 2, ..., 8, 8, 8],
[2, 2, 2, ..., 8, 8, 8],
[2, 2, 2, ..., 8, 8, 8],
...,
[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0]]])
)>
_gt_sem_seg: <PixelData(
META INFORMATION
DATA FIELDS
data: tensor([[[2, 2, 2, ..., 8, 8, 8],
[2, 2, 2, ..., 8, 8, 8],
[2, 2, 2, ..., 8, 8, 8],
...,
[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0]]])
)>
)}
```
## BaseSegDataset
由于 MMSegmentation 中的所有数据集的基本功能均包括(1) 加载[数据集预处理](../user_guides/2_dataset_prepare.md) 之后的数据信息和 (2) 将数据送入数据变换流水线中进行数据变换, 因此在 MMSegmentation 中将其中的共同接口抽象成 [`BaseSegDataset`](https://mmsegmentation.readthedocs.io/en/main/api.html?highlight=BaseSegDataset#mmseg.datasets.BaseSegDataset),它继承自 [MMEngine 的 `BaseDataset`](https://github.com/open-mmlab/mmengine/blob/main/docs/en/advanced_tutorials/basedataset.md), 遵循 OpenMMLab 数据集初始化统一流程, 支持高效的内部数据存储格式, 支持数据集拼接、数据集重复采样等功能.
在 MMSegmentation BaseSegDataset 中重新定义了**数据信息加载方法**`load_data_list`)和并新增了 `get_label_map` 方法用来**修改数据集的类别信息**.
### 数据信息加载
数据信息加载的内容是样本数据的图片路径和标签路径, 具体实现在 MMSegmentation 的 BaseSegDataset 的 [`load_data_list`](https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/datasets/basesegdataset.py#L231) 中.
主要有两种获取图片和标签的路径方法, 如果当数据集目录按以下目录结构组织, [`load_data_list`](https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/datasets/basesegdataset.py#L231)) 会根据数据路径和后缀来解析.
```
├── data
│ ├── my_dataset
│ │ ├── img_dir
│ │ │ ├── train
│ │ │ │ ├── xxx{img_suffix}
│ │ │ │ ├── yyy{img_suffix}
│ │ │ ├── val
│ │ │ │ ├── zzz{img_suffix}
│ │ ├── ann_dir
│ │ │ ├── train
│ │ │ │ ├── xxx{seg_map_suffix}
│ │ │ │ ├── yyy{seg_map_suffix}
│ │ │ ├── val
│ │ │ │ ├── zzz{seg_map_suffix}
```
例如 ADE20k 数据集结构如下所示:
```
├── ade
│ ├── ADEChallengeData2016
│ │ ├── annotations
│ │ │ ├── training
│ │ │ │ ├── ADE_train_00000001.png
│ │ │ │ ├── ...
│ │ │ │── validation
│ │ │ │ ├── ADE_val_00000001.png
│ │ │ │ ├── ...
│ │ ├── images
│ │ │ ├── training
│ │ │ │ ├── ADE_train_00000001.jpg
│ │ │ │ ├── ...
│ │ │ ├── validation
│ │ │ │ ├── ADE_val_00000001.jpg
│ │ │ │ ├── ...
```
实例化 ADE20k 数据集时,输入图片和标签的路径和后缀:
```python
from mmseg.datasets import ADE20KDataset
ADE20KDataset(data_root = 'data/ade/ADEChallengeData2016',
data_prefix=dict(img_path='images/training', seg_map_path='annotations/training'),
img_suffix='.jpg',
seg_map_suffix='.png',
reduce_zero_label=True
```
如果数据集有标注文件, 实例化数据集时会根据输入的数据集标注文件加载数据信息. 例如, PascalContext 数据集实例, 输入标注文件的内容为:
```python
2008_000008
...
```
实例化时需要定义 `ann_file`
```python
PascalContextDataset(data_root='data/VOCdevkit/VOC2010/',
data_prefix=dict(img_path='JPEGImages', seg_map_path='SegmentationClassContext'),
ann_file='ImageSets/SegmentationContext/train.txt')
```
### 数据集类别修改
- 通过输入 metainfo 修改
`BaseSegDataset` 的子类元信息在数据集实现时定义为类变量,例如 Cityscapes 的 `METAINFO` 变量:
```python
class CityscapesDataset(BaseSegDataset):
"""Cityscapes dataset.
The ``img_suffix`` is fixed to '_leftImg8bit.png' and ``seg_map_suffix`` is
fixed to '_gtFine_labelTrainIds.png' for Cityscapes dataset.
"""
METAINFO = dict(
classes=('road', 'sidewalk', 'building', 'wall', 'fence', 'pole',
'traffic light', 'traffic sign', 'vegetation', 'terrain',
'sky', 'person', 'rider', 'car', 'truck', 'bus', 'train',
'motorcycle', 'bicycle'),
palette=[[128, 64, 128], [244, 35, 232], [70, 70, 70], [102, 102, 156],
[190, 153, 153], [153, 153, 153], [250, 170,
30], [220, 220, 0],
[107, 142, 35], [152, 251, 152], [70, 130, 180],
[220, 20, 60], [255, 0, 0], [0, 0, 142], [0, 0, 70],
[0, 60, 100], [0, 80, 100], [0, 0, 230], [119, 11, 32]])
```
这里的 `'classes'` 中定义了 Cityscapes 数据集标签中的类别名, 如果训练时只关注几个交通工具类别, **忽略其他类别**,
在实例化 Cityscapes 数据集时通过定义 `metainfo` 输入参数的 classes 的字段来修改数据集的元信息:
```python
from mmseg.datasets import CityscapesDataset
data_root = 'data/cityscapes/'
data_prefix=dict(img_path='leftImg8bit/train', seg_map_path='gtFine/train')
# metainfo 中只保留以下 classes
metainfo=dict(classes=( 'car', 'truck', 'bus', 'train', 'motorcycle', 'bicycle'))
dataset = CityscapesDataset(data_root=data_root, data_prefix=data_prefix, metainfo=metainfo)
print(dataset.metainfo)
{'classes': ('car', 'truck', 'bus', 'train', 'motorcycle', 'bicycle'),
'palette': [[0, 0, 142],
[0, 0, 70],
[0, 60, 100],
[0, 80, 100],
[0, 0, 230],
[119, 11, 32],
[128, 64, 128],
[244, 35, 232],
[70, 70, 70],
[102, 102, 156],
[190, 153, 153],
[153, 153, 153],
[250, 170, 30],
[220, 220, 0],
[107, 142, 35],
[152, 251, 152],
[70, 130, 180],
[220, 20, 60],
[255, 0, 0]],
# 类别索引为 255 的像素,在计算损失时会被忽略
'label_map': {0: 255,
1: 255,
2: 255,
3: 255,
4: 255,
5: 255,
6: 255,
7: 255,
8: 255,
9: 255,
10: 255,
11: 255,
12: 255,
13: 0,
14: 1,
15: 2,
16: 3,
17: 4,
18: 5},
'reduce_zero_label': False}
```
可以看到, 数据集元信息的类别和默认 Cityscapes 不同. 并且, 定义了标签重映射的字段 `label_map` 用来修改每个分割掩膜上的像素的类别索引, 分割标签类别会根据 `label_map`, 将类别重映射, [具体实现](https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/datasets/basesegdataset.py#L151):
```python
gt_semantic_seg_copy = gt_semantic_seg.copy()
for old_id, new_id in results['label_map'].items():
gt_semantic_seg[gt_semantic_seg_copy == old_id] = new_id
```
- 通过 `reduce_zero_label` 修改
对于常见的忽略 0 号标签的场景, `BaseSegDataset` 的子类中可以用 `reduce_zero_label` 输入参数来控制。`reduce_zero_label` (默认为 `False`)
用来控制是否将标签 0 忽略, 当该参数为 `True` 时(最常见的应用是 ADE20k 数据集), 对分割标签中第 0 个类别对应的类别索引改为 255 (MMSegmentation 模型中计算损失时, 默认忽略 255), 其他类别对应的类别索引减一:
```python
gt_semantic_seg[gt_semantic_seg == 0] = 255
gt_semantic_seg = gt_semantic_seg - 1
gt_semantic_seg[gt_semantic_seg == 254] = 255
```
## 数据集与数据变换流水线
在常用接口的例子中可以看到, 输入的参数中定义了数据变换流水线参数 `pipeline`, 数据集 `__getitem__` 方法返回经过数据变换的值.
当数据集输入参数没有定义 pipeline, 返回值和 `get_data_info` 方法返回值相同, 例如:
```python
from mmseg.datasets import CityscapesDataset
data_root = 'data/cityscapes/'
data_prefix=dict(img_path='leftImg8bit/train', seg_map_path='gtFine/train')
dataset = CityscapesDataset(data_root=data_root, data_prefix=data_prefix, test_mode=False)
print(dataset[0])
{'img_path': 'data/cityscapes/leftImg8bit/train/aachen/aachen_000000_000019_leftImg8bit.png',
'seg_map_path': 'data/cityscapes/gtFine/train/aachen/aachen_000000_000019_gtFine_labelTrainIds.png',
'label_map': None,
'reduce_zero_label': False,
'seg_fields': [],
'sample_idx': 0}
```