2022-01-25 20:45:39 +08:00
# UNet
[U-Net: Convolutional Networks for Biomedical Image Segmentation ](https://arxiv.org/abs/1505.04597 )
2020-12-24 15:58:09 +08:00
## Introduction
2021-04-25 00:58:59 +08:00
<!-- [ALGORITHM] -->
2021-01-11 13:35:09 +08:00
2021-09-28 16:25:37 +08:00
< a href = "http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net" > Official Repo< / a >
< a href = "https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225" > Code Snippet< / a >
2021-11-30 20:34:45 +08:00
## Abstract
2021-12-14 19:12:56 +08:00
<!-- [ABSTRACT] -->
2021-11-30 20:34:45 +08:00
There is large consent that successful training of deep networks requires many thousand annotated training samples. In this paper, we present a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently. The architecture consists of a contracting path to capture context and a symmetric expanding path that enables precise localization. We show that such a network can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks. Using the same network trained on transmitted light microscopy images (phase contrast and DIC) we won the ISBI cell tracking challenge 2015 in these categories by a large margin. Moreover, the network is fast. Segmentation of a 512x512 image takes less than a second on a recent GPU. The full implementation (based on Caffe) and the trained networks are available at [this http URL ](https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/ ).
<!-- [IMAGE] -->
< div align = center >
< img src = "https://user-images.githubusercontent.com/24582831/142902977-20fe689d-a147-4d92-9690-dbfde8b68dbe.png" width = "70%" / >
< / div >
2022-01-25 20:45:39 +08:00
## Citation
2021-09-28 16:25:37 +08:00
2022-01-25 20:45:39 +08:00
```bibtex
2020-12-24 15:58:09 +08:00
@inproceedings {ronneberger2015u,
title={U-net: Convolutional networks for biomedical image segmentation},
author={Ronneberger, Olaf and Fischer, Philipp and Brox, Thomas},
booktitle={International Conference on Medical image computing and computer-assisted intervention},
pages={234--241},
year={2015},
organization={Springer}
}
```
## Results and models
2021-12-23 21:38:51 +08:00
### Cityscapes
| Method | Backbone | Loss | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download |
| ------ | --------- | --- |--------- | ------: | -------- | -------------- | ----: | ------------: | ---------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
2022-02-23 18:00:28 +08:00
| UNet + FCN | UNet-S5-D16 | Cross Entropy | 512x1024 | 160000 | 17.91 | 3.05 | 69.10 | 71.05 | [config ](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/unet/fcn_unet_s5-d16_4x4_512x1024_160k_cityscapes.py ) | [model ](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_4x4_512x1024_160k_cityscapes/fcn_unet_s5-d16_4x4_512x1024_160k_cityscapes_20211210_145204-6860854e.pth ) | [log ](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_4x4_512x1024_160k_cityscapes/fcn_unet_s5-d16_4x4_512x1024_160k_cityscapes_20211210_145204.log.json ) |
2021-12-23 21:38:51 +08:00
2021-01-11 16:07:59 +08:00
### DRIVE
2021-12-23 21:38:51 +08:00
| Method | Backbone | Loss | Image Size | Crop Size | Stride | Lr schd | Mem (GB) | Inf time (fps) | mDice | Dice | config | download |
| ----------- | --------- | -------------------- |---------- | --------- | -----: | ------- | -------- | -------------: | --: |----: | ------------------------------------------------------------------------------------------------------------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
2022-02-23 18:00:28 +08:00
| UNet + FCN | UNet-S5-D16 | Cross Entropy | 584x565 | 64x64 | 42x42 | 40000 | 0.680 | - | 88.38 | 78.67 | [config ](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/unet/fcn_unet_s5-d16_64x64_40k_drive.py ) | [model ](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_64x64_40k_drive/fcn_unet_s5-d16_64x64_40k_drive_20201223_191051-5daf6d3b.pth ) | [log ](https://download.openmmlab.com/mmsegmentation/v0.5/unet/unet_s5-d16_64x64_40k_drive/unet_s5-d16_64x64_40k_drive-20201223_191051.log.json ) |
| UNet + FCN | UNet-S5-D16 | Cross Entropy + Dice | 584x565 | 64x64 | 42x42 | 40000 | 0.582 | - | 88.71 | 79.32 | [config ](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive.py ) | [model ](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive/fcn_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive_20211210_201820-785de5c2.pth ) | [log ](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive/fcn_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive_20211210_201820.log.json ) |
| UNet + PSPNet | UNet-S5-D16 | Cross Entropy | 584x565 | 64x64 | 42x42 | 40000 | 0.599 | - | 88.35 | 78.62 | [config ](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/unet/pspnet_unet_s5-d16_64x64_40k_drive.py ) | [model ](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_64x64_40k_drive/pspnet_unet_s5-d16_64x64_40k_drive_20201227_181818-aac73387.pth ) | [log ](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_64x64_40k_drive/pspnet_unet_s5-d16_64x64_40k_drive-20201227_181818.log.json ) |
| UNet + PSPNet | UNet-S5-D16 | Cross Entropy + Dice | 584x565 | 64x64 | 42x42 | 40000 | 0.585 | - | 88.76 | 79.42 | [config ](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive.py ) | [model ](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive/pspnet_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive_20211210_201821-22b3e3ba.pth ) | [log ](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive/pspnet_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive_20211210_201821.log.json ) |
| UNet + DeepLabV3 | UNet-S5-D16 | Cross Entropy | 584x565 | 64x64 | 42x42 | 40000 | 0.596 | - | 88.38 |78.69 | [config ](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/unet/deeplabv3_unet_s5-d16_64x64_40k_drive.py ) | [model ](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_64x64_40k_drive/deeplabv3_unet_s5-d16_64x64_40k_drive_20201226_094047-0671ff20.pth ) | [log ](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_64x64_40k_drive/deeplabv3_unet_s5-d16_64x64_40k_drive-20201226_094047.log.json ) |
| UNet + DeepLabV3 | UNet-S5-D16 | Cross Entropy + Dice | 584x565 | 64x64 | 42x42 | 40000 | 0.582 | - | 88.84 | 79.56 | [config ](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive.py ) | [model ](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive_20211210_201825-6bf0efd7.pth ) | [log ](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive_20211210_201825.log.json ) |
2021-01-11 16:07:59 +08:00
### STARE
2021-12-23 21:38:51 +08:00
| Method | Backbone | Loss | Image Size | Crop Size | Stride | Lr schd | Mem (GB) | Inf time (fps) | mDice | Dice | config | download |
| ----------- | --------| --------------- | ---------- | --------- | -----: | ------- | -------- | -------------: | --: |----: | -------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
2022-02-23 18:00:28 +08:00
| UNet + FCN | UNet-S5-D16 | Cross Entropy | 605x700 | 128x128 | 85x85 | 40000 | 0.968 | - | 89.78 | 81.02 | [config ](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/unet/fcn_unet_s5-d16_128x128_40k_stare.py ) | [model ](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_128x128_40k_stare/fcn_unet_s5-d16_128x128_40k_stare_20201223_191051-7d77e78b.pth ) | [log ](https://download.openmmlab.com/mmsegmentation/v0.5/unet/unet_s5-d16_128x128_40k_stare/unet_s5-d16_128x128_40k_stare-20201223_191051.log.json ) |
| UNet + FCN | UNet-S5-D16 | Cross Entropy + Dice | 605x700 | 128x128 | 85x85 | 40000 | 0.986 | - | 90.65 | 82.70 | [config ](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare.py ) | [model ](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare_20211210_201821-f75705a9.pth ) | [log ](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare_20211210_201821.log.json ) |
| UNet + PSPNet | UNet-S5-D16 | Cross Entropy | 605x700 | 128x128 | 85x85 | 40000 | 0.982 | - | 89.89 | 81.22 | [config ](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/unet/pspnet_unet_s5-d16_128x128_40k_stare.py ) | [model ](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_stare/pspnet_unet_s5-d16_128x128_40k_stare_20201227_181818-3c2923c4.pth ) | [log ](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_stare/pspnet_unet_s5-d16_128x128_40k_stare-20201227_181818.log.json ) |
| UNet + PSPNet | UNet-S5-D16 | Cross Entropy + Dice | 605x700 | 128x128 | 85x85 | 40000 | 1.028 | - | 90.72 | 82.84 | [config ](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare.py ) | [model ](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare_20211210_201823-f1063ef7.pth ) | [log ](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare_20211210_201823.log.json ) |
| UNet + DeepLabV3 | UNet-S5-D16 | Cross Entropy | 605x700 | 128x128 | 85x85 | 40000 | 0.999 | - | 89.73 | 80.93 | [config ](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/unet/deeplabv3_unet_s5-d16_128x128_40k_stare.py ) | [model ](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_stare/deeplabv3_unet_s5-d16_128x128_40k_stare_20201226_094047-93dcb93c.pth ) | [log ](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_stare/deeplabv3_unet_s5-d16_128x128_40k_stare-20201226_094047.log.json ) |
| UNet + DeepLabV3 | UNet-S5-D16 | Cross Entropy + Dice | 605x700 | 128x128 | 85x85 | 40000 | 1.010 | - | 90.65 | 82.71 | [config ](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare.py ) | [model ](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare_20211210_201825-21db614c.pth ) | [log ](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare_20211210_201825.log.json ) |
2021-01-11 16:07:59 +08:00
### CHASE_DB1
2021-12-23 21:38:51 +08:00
| Method | Backbone | Loss | Image Size | Crop Size | Stride | Lr schd | Mem (GB) | Inf time (fps) | mDice | Dice | config | download |
| ----------- | --------- | --------------- | ---------- | --------- | -----: | ------- | -------- | -------------: | --: |----: | -------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
2022-02-23 18:00:28 +08:00
| UNet + FCN | UNet-S5-D16 | Cross Entropy | 960x999 | 128x128 | 85x85 | 40000 | 0.968 | - | 89.46 |80.24 | [config ](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/unet/fcn_unet_s5-d16_128x128_40k_chase_db1.py ) | [model ](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_128x128_40k_chase_db1/fcn_unet_s5-d16_128x128_40k_chase_db1_20201223_191051-11543527.pth ) | [log ](https://download.openmmlab.com/mmsegmentation/v0.5/unet/unet_s5-d16_128x128_40k_chase_db1/unet_s5-d16_128x128_40k_chase_db1-20201223_191051.log.json ) |
| UNet + FCN | UNet-S5-D16 | Cross Entropy + Dice | 960x999 | 128x128 | 85x85 | 40000 | 0.986 | - | 89.52 | 80.40 | [config ](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1.py ) | [model ](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1_20211210_201821-1c4eb7cf.pth ) | [log ](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1_20211210_201821.log.json ) |
| UNet + PSPNet | UNet-S5-D16 | Cross Entropy | 960x999 | 128x128 | 85x85 | 40000 | 0.982 | - | 89.52 |80.36 | [config ](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/unet/pspnet_unet_s5-d16_128x128_40k_chase_db1.py ) | [model ](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_chase_db1/pspnet_unet_s5-d16_128x128_40k_chase_db1_20201227_181818-68d4e609.pth ) | [log ](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_chase_db1/pspnet_unet_s5-d16_128x128_40k_chase_db1-20201227_181818.log.json ) |
| UNet + PSPNet | UNet-S5-D16 | Cross Entropy + Dice | 960x999 | 128x128 | 85x85 | 40000 | 1.028 | - | 89.45 | 80.28 | [config ](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1.py ) | [model ](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1_20211210_201823-c0802c4d.pth ) | [log ](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1_20211210_201823.log.json ) |
| UNet + DeepLabV3 | UNet-S5-D16 | Cross Entropy | 960x999 | 128x128 | 85x85 | 40000 | 0.999 | - | 89.57 |80.47 | [config ](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/unet/deeplabv3_unet_s5-d16_128x128_40k_chase_db1.py ) | [model ](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_chase_db1/deeplabv3_unet_s5-d16_128x128_40k_chase_db1_20201226_094047-4c5aefa3.pth ) | [log ](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_chase_db1/deeplabv3_unet_s5-d16_128x128_40k_chase_db1-20201226_094047.log.json ) |
| UNet + DeepLabV3 | UNet-S5-D16 | Cross Entropy + Dice | 960x999 | 128x128 | 85x85 | 40000 | 1.010 | - | 89.49 | 80.37 | [config ](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1.py ) | [model ](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1_20211210_201825-4ef29df5.pth ) | [log ](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1_20211210_201825.log.json ) |
2021-01-11 16:07:59 +08:00
### HRF
2021-12-23 21:38:51 +08:00
| Method | Backbone | Loss | Image Size | Crop Size | Stride | Lr schd | Mem (GB) | Inf time (fps) | mDice | Dice | config | download |
| ----------- | --------- | --------------- | ---------- | --------- | -----: | ------- | -------- | -------------: | --: |----: | -------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
2022-02-23 18:00:28 +08:00
| UNet + FCN | UNet-S5-D16 | Cross Entropy | 2336x3504 | 256x256 | 170x170 | 40000 | 2.525 | - | 88.92 |79.45 | [config ](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/unet/fcn_unet_s5-d16_256x256_40k_hrf.py ) | [model ](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_256x256_40k_hrf/fcn_unet_s5-d16_256x256_40k_hrf_20201223_173724-d89cf1ed.pth ) | [log ](https://download.openmmlab.com/mmsegmentation/v0.5/unet/unet_s5-d16_256x256_40k_hrf/unet_s5-d16_256x256_40k_hrf-20201223_173724.log.json ) |
| UNet + FCN | UNet-S5-D16 | Cross Entropy + Dice | 2336x3504 | 256x256 | 170x170 | 40000 | 2.623 | - | 89.64 | 80.87 | [config ](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf.py ) | [model ](https://download.openmmlab.com/mmsegmentation/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf/fcn_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf_20211210_201821-c314da8a.pth ) | [log ](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf/fcn_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf_20211210_201821.log.json ) |
| UNet + PSPNet | UNet-S5-D16 | Cross Entropy | 2336x3504 | 256x256 | 170x170 | 40000 | 2.588 | - | 89.24 |80.07 | [config ](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/unet/pspnet_unet_s5-d16_256x256_40k_hrf.py ) | [model ](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_256x256_40k_hrf/pspnet_unet_s5-d16_256x256_40k_hrf_20201227_181818-fdb7e29b.pth ) | [log ](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_256x256_40k_hrf/pspnet_unet_s5-d16_256x256_40k_hrf-20201227_181818.log.json ) |
| UNet + PSPNet | UNet-S5-D16 | Cross Entropy + Dice | 2336x3504 | 256x256 | 170x170 | 40000 | 2.798 | - | 89.69 | 80.96 | [config ](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf.py ) | [model ](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf/pspnet_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf_20211210_201823-53d492fa.pth ) | [log ](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf/pspnet_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf_20211210_201823.log.json ) |
| UNet + DeepLabV3 | UNet-S5-D16| Cross Entropy | 2336x3504 | 256x256 | 170x170 | 40000 | 2.604 | - | 89.32 |80.21 | [config ](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/unet/deeplabv3_unet_s5-d16_256x256_40k_hrf.py ) | [model ](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_256x256_40k_hrf/deeplabv3_unet_s5-d16_256x256_40k_hrf_20201226_094047-3a1fdf85.pth ) | [log ](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_256x256_40k_hrf/deeplabv3_unet_s5-d16_256x256_40k_hrf-20201226_094047.log.json ) |
| UNet + DeepLabV3 | UNet-S5-D16| Cross Entropy + Dice | 2336x3504 | 256x256 | 170x170 | 40000 | 2.607 | - | 89.56 | 80.71 | [config ](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf.py ) | [model ](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf_20211210_202032-59daf7a4.pth ) | [log ](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf_20211210_202032.log.json ) |
2021-12-24 23:29:59 +08:00
Note:
- In `DRIVE` , `STARE` , `CHASE_DB1` , and `HRF` dataset, `mDice` is mean dice of background and vessel, while `Dice` is dice metric of vessel(foreground) only.