mmsegmentation/configs/psanet/psanet.yml

306 lines
10 KiB
YAML
Raw Normal View History

Collections:
- Name: psanet
Metadata:
Training Data:
- Cityscapes
- ADE20K
- Pascal VOC 2012 + Aug
Paper:
URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf
Title: 'PSANet: Point-wise Spatial Attention Network for Scene Parsing'
README: configs/psanet/README.md
Code:
URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psa_head.py#L18
Version: v0.17.0
Converted From:
Code: https://github.com/hszhao/PSANet
Models:
- Name: psanet_r50-d8_512x1024_40k_cityscapes
In Collection: psanet
Metadata:
backbone: R-50-D8
crop size: (512,1024)
lr schd: 40000
inference time (ms/im):
- value: 315.46
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,1024)
2021-11-30 20:54:25 +08:00
Training Memory (GB): 7.0
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 77.63
mIoU(ms+flip): 79.04
Config: configs/psanet/psanet_r50-d8_512x1024_40k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x1024_40k_cityscapes/psanet_r50-d8_512x1024_40k_cityscapes_20200606_103117-99fac37c.pth
- Name: psanet_r101-d8_512x1024_40k_cityscapes
In Collection: psanet
Metadata:
backbone: R-101-D8
crop size: (512,1024)
lr schd: 40000
inference time (ms/im):
- value: 454.55
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,1024)
2021-11-30 20:54:25 +08:00
Training Memory (GB): 10.5
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.14
mIoU(ms+flip): 80.19
Config: configs/psanet/psanet_r101-d8_512x1024_40k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x1024_40k_cityscapes/psanet_r101-d8_512x1024_40k_cityscapes_20200606_001418-27b9cfa7.pth
- Name: psanet_r50-d8_769x769_40k_cityscapes
In Collection: psanet
Metadata:
backbone: R-50-D8
crop size: (769,769)
lr schd: 40000
inference time (ms/im):
- value: 714.29
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (769,769)
2021-11-30 20:54:25 +08:00
Training Memory (GB): 7.9
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 77.99
mIoU(ms+flip): 79.64
Config: configs/psanet/psanet_r50-d8_769x769_40k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_769x769_40k_cityscapes/psanet_r50-d8_769x769_40k_cityscapes_20200530_033717-d5365506.pth
- Name: psanet_r101-d8_769x769_40k_cityscapes
In Collection: psanet
Metadata:
backbone: R-101-D8
crop size: (769,769)
lr schd: 40000
inference time (ms/im):
- value: 1020.41
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (769,769)
2021-11-30 20:54:25 +08:00
Training Memory (GB): 11.9
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 78.43
mIoU(ms+flip): 80.26
Config: configs/psanet/psanet_r101-d8_769x769_40k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_769x769_40k_cityscapes/psanet_r101-d8_769x769_40k_cityscapes_20200530_035107-997da1e6.pth
- Name: psanet_r50-d8_512x1024_80k_cityscapes
In Collection: psanet
Metadata:
backbone: R-50-D8
crop size: (512,1024)
lr schd: 80000
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 77.24
mIoU(ms+flip): 78.69
Config: configs/psanet/psanet_r50-d8_512x1024_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x1024_80k_cityscapes/psanet_r50-d8_512x1024_80k_cityscapes_20200606_161842-ab60a24f.pth
- Name: psanet_r101-d8_512x1024_80k_cityscapes
In Collection: psanet
Metadata:
backbone: R-101-D8
crop size: (512,1024)
lr schd: 80000
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.31
mIoU(ms+flip): 80.53
Config: configs/psanet/psanet_r101-d8_512x1024_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x1024_80k_cityscapes/psanet_r101-d8_512x1024_80k_cityscapes_20200606_161823-0f73a169.pth
- Name: psanet_r50-d8_769x769_80k_cityscapes
In Collection: psanet
Metadata:
backbone: R-50-D8
crop size: (769,769)
lr schd: 80000
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.31
mIoU(ms+flip): 80.91
Config: configs/psanet/psanet_r50-d8_769x769_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_769x769_80k_cityscapes/psanet_r50-d8_769x769_80k_cityscapes_20200606_225134-fe42f49e.pth
- Name: psanet_r101-d8_769x769_80k_cityscapes
In Collection: psanet
Metadata:
backbone: R-101-D8
crop size: (769,769)
lr schd: 80000
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.69
mIoU(ms+flip): 80.89
Config: configs/psanet/psanet_r101-d8_769x769_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_769x769_80k_cityscapes/psanet_r101-d8_769x769_80k_cityscapes_20200606_214550-7665827b.pth
- Name: psanet_r50-d8_512x512_80k_ade20k
In Collection: psanet
Metadata:
backbone: R-50-D8
crop size: (512,512)
lr schd: 80000
inference time (ms/im):
- value: 52.88
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
2021-11-30 20:54:25 +08:00
Training Memory (GB): 9.0
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 41.14
mIoU(ms+flip): 41.91
Config: configs/psanet/psanet_r50-d8_512x512_80k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_80k_ade20k/psanet_r50-d8_512x512_80k_ade20k_20200614_144141-835e4b97.pth
- Name: psanet_r101-d8_512x512_80k_ade20k
In Collection: psanet
Metadata:
backbone: R-101-D8
crop size: (512,512)
lr schd: 80000
inference time (ms/im):
- value: 76.16
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
2021-11-30 20:54:25 +08:00
Training Memory (GB): 12.5
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 43.8
mIoU(ms+flip): 44.75
Config: configs/psanet/psanet_r101-d8_512x512_80k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_80k_ade20k/psanet_r101-d8_512x512_80k_ade20k_20200614_185117-1fab60d4.pth
- Name: psanet_r50-d8_512x512_160k_ade20k
In Collection: psanet
Metadata:
backbone: R-50-D8
crop size: (512,512)
lr schd: 160000
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 41.67
mIoU(ms+flip): 42.95
Config: configs/psanet/psanet_r50-d8_512x512_160k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_160k_ade20k/psanet_r50-d8_512x512_160k_ade20k_20200615_161258-148077dd.pth
- Name: psanet_r101-d8_512x512_160k_ade20k
In Collection: psanet
Metadata:
backbone: R-101-D8
crop size: (512,512)
lr schd: 160000
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 43.74
mIoU(ms+flip): 45.38
Config: configs/psanet/psanet_r101-d8_512x512_160k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_160k_ade20k/psanet_r101-d8_512x512_160k_ade20k_20200615_161537-dbfa564c.pth
- Name: psanet_r50-d8_512x512_20k_voc12aug
In Collection: psanet
Metadata:
backbone: R-50-D8
crop size: (512,512)
lr schd: 20000
inference time (ms/im):
- value: 54.82
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
2021-11-30 20:54:25 +08:00
Training Memory (GB): 6.9
Results:
- Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 76.39
mIoU(ms+flip): 77.34
Config: configs/psanet/psanet_r50-d8_512x512_20k_voc12aug.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_20k_voc12aug/psanet_r50-d8_512x512_20k_voc12aug_20200617_102413-2f1bbaa1.pth
- Name: psanet_r101-d8_512x512_20k_voc12aug
In Collection: psanet
Metadata:
backbone: R-101-D8
crop size: (512,512)
lr schd: 20000
inference time (ms/im):
- value: 79.18
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
2021-11-30 20:54:25 +08:00
Training Memory (GB): 10.4
Results:
- Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 77.91
mIoU(ms+flip): 79.3
Config: configs/psanet/psanet_r101-d8_512x512_20k_voc12aug.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_20k_voc12aug/psanet_r101-d8_512x512_20k_voc12aug_20200617_110624-946fef11.pth
- Name: psanet_r50-d8_512x512_40k_voc12aug
In Collection: psanet
Metadata:
backbone: R-50-D8
crop size: (512,512)
lr schd: 40000
Results:
- Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 76.3
mIoU(ms+flip): 77.35
Config: configs/psanet/psanet_r50-d8_512x512_40k_voc12aug.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_40k_voc12aug/psanet_r50-d8_512x512_40k_voc12aug_20200613_161946-f596afb5.pth
- Name: psanet_r101-d8_512x512_40k_voc12aug
In Collection: psanet
Metadata:
backbone: R-101-D8
crop size: (512,512)
lr schd: 40000
Results:
- Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 77.73
mIoU(ms+flip): 79.05
Config: configs/psanet/psanet_r101-d8_512x512_40k_voc12aug.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_40k_voc12aug/psanet_r101-d8_512x512_40k_voc12aug_20200613_161946-1f560f9e.pth