59 lines
1.7 KiB
Python
59 lines
1.7 KiB
Python
|
# model settings
|
||
|
norm_cfg = dict(type='SyncBN', requires_grad=True, momentum=0.01)
|
||
|
model = dict(
|
||
|
type='EncoderDecoder',
|
||
|
backbone=dict(
|
||
|
type='FastSCNN',
|
||
|
downsample_dw_channels=(32, 48),
|
||
|
global_in_channels=64,
|
||
|
global_block_channels=(64, 96, 128),
|
||
|
global_block_strides=(2, 2, 1),
|
||
|
global_out_channels=128,
|
||
|
higher_in_channels=64,
|
||
|
lower_in_channels=128,
|
||
|
fusion_out_channels=128,
|
||
|
out_indices=(0, 1, 2),
|
||
|
norm_cfg=norm_cfg,
|
||
|
align_corners=False),
|
||
|
decode_head=dict(
|
||
|
type='DepthwiseSeparableFCNHead',
|
||
|
in_channels=128,
|
||
|
channels=128,
|
||
|
concat_input=False,
|
||
|
num_classes=19,
|
||
|
in_index=-1,
|
||
|
norm_cfg=norm_cfg,
|
||
|
align_corners=False,
|
||
|
loss_decode=dict(
|
||
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.)),
|
||
|
auxiliary_head=[
|
||
|
dict(
|
||
|
type='FCNHead',
|
||
|
in_channels=128,
|
||
|
channels=32,
|
||
|
num_convs=1,
|
||
|
num_classes=19,
|
||
|
in_index=-2,
|
||
|
norm_cfg=norm_cfg,
|
||
|
concat_input=False,
|
||
|
align_corners=False,
|
||
|
loss_decode=dict(
|
||
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
||
|
dict(
|
||
|
type='FCNHead',
|
||
|
in_channels=64,
|
||
|
channels=32,
|
||
|
num_convs=1,
|
||
|
num_classes=19,
|
||
|
in_index=-3,
|
||
|
norm_cfg=norm_cfg,
|
||
|
concat_input=False,
|
||
|
align_corners=False,
|
||
|
loss_decode=dict(
|
||
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
||
|
])
|
||
|
|
||
|
# model training and testing settings
|
||
|
train_cfg = dict()
|
||
|
test_cfg = dict(mode='whole')
|