70 lines
2.3 KiB
Python
70 lines
2.3 KiB
Python
|
import torch
|
||
|
import torch.nn as nn
|
||
|
from mmcv.cnn import ConvModule
|
||
|
|
||
|
from ..builder import HEADS
|
||
|
from .decode_head import BaseDecodeHead
|
||
|
|
||
|
|
||
|
@HEADS.register_module()
|
||
|
class FCNHead(BaseDecodeHead):
|
||
|
"""Fully Convolution Networks for Semantic Segmentation.
|
||
|
|
||
|
This head is implemented of `FCNNet <https://arxiv.org/abs/1411.4038>`_.
|
||
|
|
||
|
Args:
|
||
|
num_convs (int): Number of convs in the head. Default: 2.
|
||
|
kernel_size (int): The kernel size for convs in the head. Default: 3.
|
||
|
concat_input (bool): Whether concat the input and output of convs
|
||
|
before classification layer.
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
num_convs=2,
|
||
|
kernel_size=3,
|
||
|
concat_input=True,
|
||
|
**kwargs):
|
||
|
assert num_convs > 0
|
||
|
self.num_convs = num_convs
|
||
|
self.concat_input = concat_input
|
||
|
super(FCNHead, self).__init__(**kwargs)
|
||
|
convs = []
|
||
|
convs.append(
|
||
|
ConvModule(
|
||
|
self.in_channels,
|
||
|
self.channels,
|
||
|
kernel_size=kernel_size,
|
||
|
padding=kernel_size // 2,
|
||
|
conv_cfg=self.conv_cfg,
|
||
|
norm_cfg=self.norm_cfg,
|
||
|
act_cfg=self.act_cfg))
|
||
|
for i in range(num_convs - 1):
|
||
|
convs.append(
|
||
|
ConvModule(
|
||
|
self.channels,
|
||
|
self.channels,
|
||
|
kernel_size=kernel_size,
|
||
|
padding=kernel_size // 2,
|
||
|
conv_cfg=self.conv_cfg,
|
||
|
norm_cfg=self.norm_cfg,
|
||
|
act_cfg=self.act_cfg))
|
||
|
self.convs = nn.Sequential(*convs)
|
||
|
if self.concat_input:
|
||
|
self.conv_cat = ConvModule(
|
||
|
self.in_channels + self.channels,
|
||
|
self.channels,
|
||
|
kernel_size=kernel_size,
|
||
|
padding=kernel_size // 2,
|
||
|
conv_cfg=self.conv_cfg,
|
||
|
norm_cfg=self.norm_cfg,
|
||
|
act_cfg=self.act_cfg)
|
||
|
|
||
|
def forward(self, inputs):
|
||
|
"""Forward function."""
|
||
|
x = self._transform_inputs(inputs)
|
||
|
output = self.convs(x)
|
||
|
if self.concat_input:
|
||
|
output = self.conv_cat(torch.cat([x, output], dim=1))
|
||
|
output = self.cls_seg(output)
|
||
|
return output
|