57 lines
1.6 KiB
Python
57 lines
1.6 KiB
Python
|
# model settings
|
||
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||
|
model = dict(
|
||
|
type='CascadeEncoderDecoder',
|
||
|
num_stages=2,
|
||
|
pretrained='open-mmlab://resnet50_v1c',
|
||
|
backbone=dict(
|
||
|
type='ResNetV1c',
|
||
|
depth=50,
|
||
|
num_stages=4,
|
||
|
out_indices=(0, 1, 2, 3),
|
||
|
dilations=(1, 1, 1, 1),
|
||
|
strides=(1, 2, 2, 2),
|
||
|
norm_cfg=norm_cfg,
|
||
|
norm_eval=False,
|
||
|
style='pytorch',
|
||
|
contract_dilation=True),
|
||
|
neck=dict(
|
||
|
type='FPN',
|
||
|
in_channels=[256, 512, 1024, 2048],
|
||
|
out_channels=256,
|
||
|
num_outs=4),
|
||
|
decode_head=[
|
||
|
dict(
|
||
|
type='FPNHead',
|
||
|
in_channels=[256, 256, 256, 256],
|
||
|
in_index=[0, 1, 2, 3],
|
||
|
feature_strides=[4, 8, 16, 32],
|
||
|
channels=128,
|
||
|
dropout_ratio=-1,
|
||
|
num_classes=19,
|
||
|
norm_cfg=norm_cfg,
|
||
|
align_corners=False,
|
||
|
loss_decode=dict(
|
||
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
||
|
dict(
|
||
|
type='PointHead',
|
||
|
in_channels=[256],
|
||
|
in_index=[0],
|
||
|
channels=256,
|
||
|
num_fcs=3,
|
||
|
coarse_pred_each_layer=True,
|
||
|
dropout_ratio=-1,
|
||
|
num_classes=19,
|
||
|
align_corners=False,
|
||
|
loss_decode=dict(
|
||
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0))
|
||
|
])
|
||
|
# model training and testing settings
|
||
|
train_cfg = dict(
|
||
|
num_points=2048, oversample_ratio=3, importance_sample_ratio=0.75)
|
||
|
test_cfg = dict(
|
||
|
mode='whole',
|
||
|
subdivision_steps=2,
|
||
|
subdivision_num_points=8196,
|
||
|
scale_factor=2)
|