mmsegmentation/projects/gid_dataset/user_guides/2_dataset_prepare.md

54 lines
1.7 KiB
Markdown
Raw Normal View History

## Gaofen Image Dataset (GID)
- GID 数据集可在[此处](https://x-ytong.github.io/project/GID.html)进行下载。
- GID 数据集包含 150 张 6800x7200 的大尺寸图像,标签为 RGB 标签。
- 根据[文献](https://ieeexplore.ieee.org/document/9343296/),此处选择 15 张图像生成训练集和验证集,该 15 张图像包含了所有六类信息。所选的图像名称如下:
```None
GF2_PMS1__L1A0000647767-MSS1
GF2_PMS1__L1A0001064454-MSS1
GF2_PMS1__L1A0001348919-MSS1
GF2_PMS1__L1A0001680851-MSS1
GF2_PMS1__L1A0001680853-MSS1
GF2_PMS1__L1A0001680857-MSS1
GF2_PMS1__L1A0001757429-MSS1
GF2_PMS2__L1A0000607681-MSS2
GF2_PMS2__L1A0000635115-MSS2
GF2_PMS2__L1A0000658637-MSS2
GF2_PMS2__L1A0001206072-MSS2
GF2_PMS2__L1A0001471436-MSS2
GF2_PMS2__L1A0001642620-MSS2
GF2_PMS2__L1A0001787089-MSS2
GF2_PMS2__L1A0001838560-MSS2
```
这里也提供了一个脚本来方便的筛选出15张图像
```
python projects/gid_dataset/tools/dataset_converters/gid_select15imgFromAll.py {150 张图像的路径} {150 张标签的路径} {15 张图像的路径} {15 张标签的路径}
```
在选择出 15 张图像后,执行以下命令进行裁切及标签的转换,需要修改为您所存储 15 张图像及标签的路径。
```
python projects/gid_dataset/tools/dataset_converters/gid.py {15 张图像的路径} {15 张标签的路径}
```
完成裁切后的 GID 数据结构如下:
```none
mmsegmentation
├── mmseg
├── tools
├── configs
├── data
│ ├── gid
│ │ ├── ann_dir
| │ │ │ ├── train
| │ │ │ ├── val
│ │ ├── img_dir
| │ │ │ ├── train
| │ │ │ ├── val
```