mmsegmentation/.dev/log_collector/readme.md

144 lines
4.2 KiB
Markdown
Raw Normal View History

# Log Collector
## Function
Automatically collect logs and write the result in a json file or markdown file.
If there are several `.log.json` files in one folder, Log Collector assumes that the `.log.json` files other than the first one are resume from the preceding `.log.json` file. Log Collector returns the result considering all `.log.json` files.
## Usage:
To use log collector, you need to write a config file to configure the log collector first.
For example:
example_config.py:
```python
# The work directory that contains folders that contains .log.json files.
work_dir = '../../work_dirs'
# The metric used to find the best evaluation.
metric = 'mIoU'
# **Don't specify the log_items and ignore_keywords at the same time.**
# Specify the log files we would like to collect in `log_items`.
# The folders specified should be the subdirectories of `work_dir`.
log_items = [
'segformer_mit-b5_512x512_160k_ade20k_cnn_lr_with_warmup',
'segformer_mit-b5_512x512_160k_ade20k_cnn_no_warmup_lr',
'segformer_mit-b5_512x512_160k_ade20k_mit_trans_lr',
'segformer_mit-b5_512x512_160k_ade20k_swin_trans_lr'
]
# Or specify `ignore_keywords`. The folders whose name contain one
# of the keywords in the `ignore_keywords` list(e.g., `'segformer'`)
# won't be collected.
# ignore_keywords = ['segformer']
# Other log items in .log.json that you want to collect.
# should not include metric.
other_info_keys = ["mAcc"]
# The output markdown file's name.
markdown_file ='markdowns/lr_in_trans.json.md'
# The output json file's name. (optional)
json_file = 'jsons/trans_in_cnn.json'
```
The structure of the work-dir directory should be like
```text
├── work-dir
│ ├── folder1
│ │ ├── time1.log.json
│ │ ├── time2.log.json
│ │ ├── time3.log.json
│ │ ├── time4.log.json
│ ├── folder2
│ │ ├── time5.log.json
│ │ ├── time6.log.json
│ │ ├── time7.log.json
│ │ ├── time8.log.json
```
Then , cd to the log collector folder.
Now you can run log_collector.py by using command:
```bash
python log_collector.py ./example_config.py
```
The output markdown file is like:
|exp_num|method|mIoU best|best index|mIoU last|last index|last iter num|
|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
|1|segformer_mit-b5_512x512_160k_ade20k_cnn_lr_with_warmup|0.2776|10|0.2776|10|160000|
|2|segformer_mit-b5_512x512_160k_ade20k_cnn_no_warmup_lr|0.2802|10|0.2802|10|160000|
|3|segformer_mit-b5_512x512_160k_ade20k_mit_trans_lr|0.4943|11|0.4943|11|160000|
|4|segformer_mit-b5_512x512_160k_ade20k_swin_trans_lr|0.4883|11|0.4883|11|160000|
The output json file is like:
```json
[
{
"method": "segformer_mit-b5_512x512_160k_ade20k_cnn_lr_with_warmup",
"metric_used": "mIoU",
"last_iter": 160000,
"last eval": {
"eval_index": 10,
"mIoU": 0.2776,
"mAcc": 0.3779
},
"best eval": {
"eval_index": 10,
"mIoU": 0.2776,
"mAcc": 0.3779
}
},
{
"method": "segformer_mit-b5_512x512_160k_ade20k_cnn_no_warmup_lr",
"metric_used": "mIoU",
"last_iter": 160000,
"last eval": {
"eval_index": 10,
"mIoU": 0.2802,
"mAcc": 0.3764
},
"best eval": {
"eval_index": 10,
"mIoU": 0.2802,
"mAcc": 0.3764
}
},
{
"method": "segformer_mit-b5_512x512_160k_ade20k_mit_trans_lr",
"metric_used": "mIoU",
"last_iter": 160000,
"last eval": {
"eval_index": 11,
"mIoU": 0.4943,
"mAcc": 0.6097
},
"best eval": {
"eval_index": 11,
"mIoU": 0.4943,
"mAcc": 0.6097
}
},
{
"method": "segformer_mit-b5_512x512_160k_ade20k_swin_trans_lr",
"metric_used": "mIoU",
"last_iter": 160000,
"last eval": {
"eval_index": 11,
"mIoU": 0.4883,
"mAcc": 0.6061
},
"best eval": {
"eval_index": 11,
"mIoU": 0.4883,
"mAcc": 0.6061
}
}
]
```