mmsegmentation/configs/ccnet/ccnet.yml

297 lines
9.4 KiB
YAML
Raw Normal View History

Collections:
- Metadata:
Training Data:
- Cityscapes
- ADE20K
- Pascal VOC 2012 + Aug
Name: ccnet
Models:
- Config: configs/ccnet/ccnet_r50-d8_512x1024_40k_cityscapes.py
In Collection: ccnet
Metadata:
backbone: R-50-D8
crop size: (512,1024)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (512,1024)
value: 301.2
lr schd: 40000
memory (GB): 6.0
Name: ccnet_r50-d8_512x1024_40k_cityscapes
Results:
Dataset: Cityscapes
Metrics:
mIoU: 77.76
mIoU(ms+flip): 78.87
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_512x1024_40k_cityscapes/ccnet_r50-d8_512x1024_40k_cityscapes_20200616_142517-4123f401.pth
- Config: configs/ccnet/ccnet_r101-d8_512x1024_40k_cityscapes.py
In Collection: ccnet
Metadata:
backbone: R-101-D8
crop size: (512,1024)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (512,1024)
value: 432.9
lr schd: 40000
memory (GB): 9.5
Name: ccnet_r101-d8_512x1024_40k_cityscapes
Results:
Dataset: Cityscapes
Metrics:
mIoU: 76.35
mIoU(ms+flip): 78.19
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_512x1024_40k_cityscapes/ccnet_r101-d8_512x1024_40k_cityscapes_20200616_142540-a3b84ba6.pth
- Config: configs/ccnet/ccnet_r50-d8_769x769_40k_cityscapes.py
In Collection: ccnet
Metadata:
backbone: R-50-D8
crop size: (769,769)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (769,769)
value: 699.3
lr schd: 40000
memory (GB): 6.8
Name: ccnet_r50-d8_769x769_40k_cityscapes
Results:
Dataset: Cityscapes
Metrics:
mIoU: 78.46
mIoU(ms+flip): 79.93
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_769x769_40k_cityscapes/ccnet_r50-d8_769x769_40k_cityscapes_20200616_145125-76d11884.pth
- Config: configs/ccnet/ccnet_r101-d8_769x769_40k_cityscapes.py
In Collection: ccnet
Metadata:
backbone: R-101-D8
crop size: (769,769)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (769,769)
value: 990.1
lr schd: 40000
memory (GB): 10.7
Name: ccnet_r101-d8_769x769_40k_cityscapes
Results:
Dataset: Cityscapes
Metrics:
mIoU: 76.94
mIoU(ms+flip): 78.62
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_769x769_40k_cityscapes/ccnet_r101-d8_769x769_40k_cityscapes_20200617_101428-4f57c8d0.pth
- Config: configs/ccnet/ccnet_r50-d8_512x1024_80k_cityscapes.py
In Collection: ccnet
Metadata:
backbone: R-50-D8
crop size: (512,1024)
lr schd: 80000
Name: ccnet_r50-d8_512x1024_80k_cityscapes
Results:
Dataset: Cityscapes
Metrics:
mIoU: 79.03
mIoU(ms+flip): 80.16
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_512x1024_80k_cityscapes/ccnet_r50-d8_512x1024_80k_cityscapes_20200617_010421-869a3423.pth
- Config: configs/ccnet/ccnet_r101-d8_512x1024_80k_cityscapes.py
In Collection: ccnet
Metadata:
backbone: R-101-D8
crop size: (512,1024)
lr schd: 80000
Name: ccnet_r101-d8_512x1024_80k_cityscapes
Results:
Dataset: Cityscapes
Metrics:
mIoU: 78.87
mIoU(ms+flip): 79.9
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_512x1024_80k_cityscapes/ccnet_r101-d8_512x1024_80k_cityscapes_20200617_203935-ffae8917.pth
- Config: configs/ccnet/ccnet_r50-d8_769x769_80k_cityscapes.py
In Collection: ccnet
Metadata:
backbone: R-50-D8
crop size: (769,769)
lr schd: 80000
Name: ccnet_r50-d8_769x769_80k_cityscapes
Results:
Dataset: Cityscapes
Metrics:
mIoU: 79.29
mIoU(ms+flip): 81.08
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_769x769_80k_cityscapes/ccnet_r50-d8_769x769_80k_cityscapes_20200617_010421-73eed8ca.pth
- Config: configs/ccnet/ccnet_r101-d8_769x769_80k_cityscapes.py
In Collection: ccnet
Metadata:
backbone: R-101-D8
crop size: (769,769)
lr schd: 80000
Name: ccnet_r101-d8_769x769_80k_cityscapes
Results:
Dataset: Cityscapes
Metrics:
mIoU: 79.45
mIoU(ms+flip): 80.66
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_769x769_80k_cityscapes/ccnet_r101-d8_769x769_80k_cityscapes_20200618_011502-ad3cd481.pth
- Config: configs/ccnet/ccnet_r50-d8_512x512_80k_ade20k.py
In Collection: ccnet
Metadata:
backbone: R-50-D8
crop size: (512,512)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (512,512)
value: 47.87
lr schd: 80000
memory (GB): 8.8
Name: ccnet_r50-d8_512x512_80k_ade20k
Results:
Dataset: ADE20K
Metrics:
mIoU: 41.78
mIoU(ms+flip): 42.98
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_512x512_80k_ade20k/ccnet_r50-d8_512x512_80k_ade20k_20200615_014848-aa37f61e.pth
- Config: configs/ccnet/ccnet_r101-d8_512x512_80k_ade20k.py
In Collection: ccnet
Metadata:
backbone: R-101-D8
crop size: (512,512)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (512,512)
value: 70.87
lr schd: 80000
memory (GB): 12.2
Name: ccnet_r101-d8_512x512_80k_ade20k
Results:
Dataset: ADE20K
Metrics:
mIoU: 43.97
mIoU(ms+flip): 45.13
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_512x512_80k_ade20k/ccnet_r101-d8_512x512_80k_ade20k_20200615_014848-1f4929a3.pth
- Config: configs/ccnet/ccnet_r50-d8_512x512_160k_ade20k.py
In Collection: ccnet
Metadata:
backbone: R-50-D8
crop size: (512,512)
lr schd: 160000
Name: ccnet_r50-d8_512x512_160k_ade20k
Results:
Dataset: ADE20K
Metrics:
mIoU: 42.08
mIoU(ms+flip): 43.13
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_512x512_160k_ade20k/ccnet_r50-d8_512x512_160k_ade20k_20200616_084435-7c97193b.pth
- Config: configs/ccnet/ccnet_r101-d8_512x512_160k_ade20k.py
In Collection: ccnet
Metadata:
backbone: R-101-D8
crop size: (512,512)
lr schd: 160000
Name: ccnet_r101-d8_512x512_160k_ade20k
Results:
Dataset: ADE20K
Metrics:
mIoU: 43.71
mIoU(ms+flip): 45.04
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_512x512_160k_ade20k/ccnet_r101-d8_512x512_160k_ade20k_20200616_000644-e849e007.pth
- Config: configs/ccnet/ccnet_r50-d8_512x512_20k_voc12aug.py
In Collection: ccnet
Metadata:
backbone: R-50-D8
crop size: (512,512)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (512,512)
value: 48.9
lr schd: 20000
memory (GB): 6.0
Name: ccnet_r50-d8_512x512_20k_voc12aug
Results:
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 76.17
mIoU(ms+flip): 77.51
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_512x512_20k_voc12aug/ccnet_r50-d8_512x512_20k_voc12aug_20200617_193212-fad81784.pth
- Config: configs/ccnet/ccnet_r101-d8_512x512_20k_voc12aug.py
In Collection: ccnet
Metadata:
backbone: R-101-D8
crop size: (512,512)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (512,512)
value: 73.31
lr schd: 20000
memory (GB): 9.5
Name: ccnet_r101-d8_512x512_20k_voc12aug
Results:
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 77.27
mIoU(ms+flip): 79.02
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_512x512_20k_voc12aug/ccnet_r101-d8_512x512_20k_voc12aug_20200617_193212-0007b61d.pth
- Config: configs/ccnet/ccnet_r50-d8_512x512_40k_voc12aug.py
In Collection: ccnet
Metadata:
backbone: R-50-D8
crop size: (512,512)
lr schd: 40000
Name: ccnet_r50-d8_512x512_40k_voc12aug
Results:
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 75.96
mIoU(ms+flip): 77.04
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_512x512_40k_voc12aug/ccnet_r50-d8_512x512_40k_voc12aug_20200613_232127-c2a15f02.pth
- Config: configs/ccnet/ccnet_r101-d8_512x512_40k_voc12aug.py
In Collection: ccnet
Metadata:
backbone: R-101-D8
crop size: (512,512)
lr schd: 40000
Name: ccnet_r101-d8_512x512_40k_voc12aug
Results:
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 77.87
mIoU(ms+flip): 78.9
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_512x512_40k_voc12aug/ccnet_r101-d8_512x512_40k_voc12aug_20200613_232127-c30da577.pth