mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
276 lines
10 KiB
Python
276 lines
10 KiB
Python
|
# Copyright (c) OpenMMLab. All rights reserved.
|
||
|
# Referred to: https://github.com/KU-CVLAB/CAT-Seg/blob/main/cat_seg/third_party/clip.py # noqa
|
||
|
import hashlib
|
||
|
import os
|
||
|
import urllib
|
||
|
import warnings
|
||
|
from typing import List, Union
|
||
|
|
||
|
import torch
|
||
|
from PIL import Image
|
||
|
from torchvision.transforms import (CenterCrop, Compose, Normalize, Resize,
|
||
|
ToTensor)
|
||
|
from tqdm import tqdm
|
||
|
|
||
|
from .clip_model import build_model
|
||
|
from .tokenizer import SimpleTokenizer as _Tokenizer
|
||
|
|
||
|
__all__ = ['available_models', 'load', 'tokenize']
|
||
|
_tokenizer = _Tokenizer()
|
||
|
|
||
|
_MODELS = {
|
||
|
'RN50':
|
||
|
'https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt', # noqa
|
||
|
'RN101':
|
||
|
'https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt', # noqa
|
||
|
'RN50x4':
|
||
|
'https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt', # noqa
|
||
|
'RN50x16':
|
||
|
'https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt', # noqa
|
||
|
'RN50x64':
|
||
|
'https://openaipublic.azureedge.net/clip/models/be1cfb55d75a9666199fb2206c106743da0f6468c9d327f3e0d0a543a9919d9c/RN50x64.pt', # noqa
|
||
|
'ViT-B/32':
|
||
|
'https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt', # noqa
|
||
|
'ViT-B/16':
|
||
|
'https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt', # noqa
|
||
|
'ViT-L/14':
|
||
|
'https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt', # noqa
|
||
|
'ViT-L/14@336px':
|
||
|
'https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt', # noqa
|
||
|
}
|
||
|
|
||
|
|
||
|
def _download(url: str, root: str = os.path.expanduser('~/.cache/clip')):
|
||
|
"""Download clip pretrained weights."""
|
||
|
os.makedirs(root, exist_ok=True)
|
||
|
filename = os.path.basename(url)
|
||
|
|
||
|
expected_sha256 = url.split('/')[-2]
|
||
|
download_target = os.path.join(root, filename)
|
||
|
|
||
|
if os.path.exists(download_target) and not os.path.isfile(download_target):
|
||
|
raise RuntimeError(
|
||
|
f'{download_target} exists and is not a regular file')
|
||
|
|
||
|
if os.path.isfile(download_target):
|
||
|
if hashlib.sha256(open(download_target,
|
||
|
'rb').read()).hexdigest() == expected_sha256:
|
||
|
return download_target
|
||
|
else:
|
||
|
warnings.warn(
|
||
|
f'{download_target} exists, but the SHA256 checksum does not\
|
||
|
match; re-downloading the file')
|
||
|
|
||
|
with urllib.request.urlopen(url) as source, open(download_target,
|
||
|
'wb') as output:
|
||
|
with tqdm(
|
||
|
total=int(source.info().get('Content-Length')),
|
||
|
ncols=80) as loop:
|
||
|
while True:
|
||
|
buffer = source.read(8192)
|
||
|
if not buffer:
|
||
|
break
|
||
|
|
||
|
output.write(buffer)
|
||
|
loop.update(len(buffer))
|
||
|
|
||
|
if hashlib.sha256(open(download_target,
|
||
|
'rb').read()).hexdigest() != expected_sha256:
|
||
|
raise RuntimeError(
|
||
|
'Model has been downloaded but the SHA256 checksum does not not\
|
||
|
match')
|
||
|
|
||
|
return download_target
|
||
|
|
||
|
|
||
|
def available_models():
|
||
|
"""Returns a list of available models."""
|
||
|
return list(_MODELS.keys())
|
||
|
|
||
|
|
||
|
def load(name: str,
|
||
|
device: Union[str, torch.device] = 'cuda'
|
||
|
if torch.cuda.is_available() else 'cpu',
|
||
|
jit=True,
|
||
|
prompt_depth=0,
|
||
|
prompt_length=0):
|
||
|
"""Load target clip model."""
|
||
|
if name not in _MODELS:
|
||
|
raise RuntimeError(
|
||
|
f'Model {name} not found; available models = {available_models()}')
|
||
|
|
||
|
model_path = _download(_MODELS[name])
|
||
|
model = torch.jit.load(
|
||
|
model_path, map_location=device if jit else 'cpu').eval()
|
||
|
n_px = model.input_resolution.item()
|
||
|
|
||
|
transform = Compose([
|
||
|
Resize(n_px, interpolation=Image.BICUBIC),
|
||
|
CenterCrop(n_px),
|
||
|
lambda image: image.convert('RGB'),
|
||
|
ToTensor(),
|
||
|
Normalize((0.48145466, 0.4578275, 0.40821073),
|
||
|
(0.26862954, 0.26130258, 0.27577711)),
|
||
|
])
|
||
|
|
||
|
if not jit:
|
||
|
model = build_model(model.state_dict(), prompt_depth,
|
||
|
prompt_length).to(device)
|
||
|
return model, transform
|
||
|
|
||
|
# patch the device names
|
||
|
device_holder = torch.jit.trace(
|
||
|
lambda: torch.ones([]).to(torch.device(device)), example_inputs=[])
|
||
|
device_node = [
|
||
|
n for n in device_holder.graph.findAllNodes('prim::Constant')
|
||
|
if 'Device' in repr(n)
|
||
|
][-1]
|
||
|
|
||
|
def patch_device(module):
|
||
|
graphs = [module.graph] if hasattr(module, 'graph') else []
|
||
|
if hasattr(module, 'forward1'):
|
||
|
graphs.append(module.forward1.graph)
|
||
|
|
||
|
for graph in graphs:
|
||
|
for node in graph.findAllNodes('prim::Constant'):
|
||
|
if 'value' in node.attributeNames() and str(
|
||
|
node['value']).startswith('cuda'):
|
||
|
node.copyAttributes(device_node)
|
||
|
|
||
|
model.apply(patch_device)
|
||
|
patch_device(model.encode_image)
|
||
|
patch_device(model.encode_text)
|
||
|
|
||
|
# patch dtype to float32 on CPU
|
||
|
if device == 'cpu':
|
||
|
float_holder = torch.jit.trace(
|
||
|
lambda: torch.ones([]).float(), example_inputs=[])
|
||
|
float_input = list(float_holder.graph.findNode('aten::to').inputs())[1]
|
||
|
float_node = float_input.node()
|
||
|
|
||
|
def patch_float(module):
|
||
|
graphs = [module.graph] if hasattr(module, 'graph') else []
|
||
|
if hasattr(module, 'forward1'):
|
||
|
graphs.append(module.forward1.graph)
|
||
|
|
||
|
for graph in graphs:
|
||
|
for node in graph.findAllNodes('aten::to'):
|
||
|
inputs = list(node.inputs())
|
||
|
for i in [1, 2]:
|
||
|
# dtype can be the second or third argument to
|
||
|
# aten::to()
|
||
|
if inputs[i].node()['value'] == 5:
|
||
|
inputs[i].node().copyAttributes(float_node)
|
||
|
|
||
|
model.apply(patch_float)
|
||
|
patch_float(model.encode_image)
|
||
|
patch_float(model.encode_text)
|
||
|
|
||
|
model.float()
|
||
|
|
||
|
return model, transform
|
||
|
|
||
|
|
||
|
def load_custom(name: str,
|
||
|
device: Union[str, torch.device] = 'cuda'
|
||
|
if torch.cuda.is_available() else 'cpu',
|
||
|
jit=True,
|
||
|
n_px=224):
|
||
|
"""Load a customized clip model."""
|
||
|
if name not in _MODELS:
|
||
|
raise RuntimeError(
|
||
|
f'Model {name} not found; available models = {available_models()}')
|
||
|
|
||
|
model_path = _download(_MODELS[name])
|
||
|
model = torch.jit.load(
|
||
|
model_path, map_location=device if jit else 'cpu').eval()
|
||
|
# n_px = model.input_resolution.item()
|
||
|
|
||
|
transform = Compose([
|
||
|
Resize(n_px, interpolation=Image.BICUBIC),
|
||
|
CenterCrop(n_px),
|
||
|
lambda image: image.convert('RGB'),
|
||
|
ToTensor(),
|
||
|
Normalize((0.48145466, 0.4578275, 0.40821073),
|
||
|
(0.26862954, 0.26130258, 0.27577711)),
|
||
|
])
|
||
|
|
||
|
if not jit:
|
||
|
model = build_model(model.state_dict()).to(device)
|
||
|
return model, transform
|
||
|
|
||
|
# patch the device names
|
||
|
device_holder = torch.jit.trace(
|
||
|
lambda: torch.ones([]).to(torch.device(device)), example_inputs=[])
|
||
|
device_node = [
|
||
|
n for n in device_holder.graph.findAllNodes('prim::Constant')
|
||
|
if 'Device' in repr(n)
|
||
|
][-1]
|
||
|
|
||
|
def patch_device(module):
|
||
|
graphs = [module.graph] if hasattr(module, 'graph') else []
|
||
|
if hasattr(module, 'forward1'):
|
||
|
graphs.append(module.forward1.graph)
|
||
|
|
||
|
for graph in graphs:
|
||
|
for node in graph.findAllNodes('prim::Constant'):
|
||
|
if 'value' in node.attributeNames() and str(
|
||
|
node['value']).startswith('cuda'):
|
||
|
node.copyAttributes(device_node)
|
||
|
|
||
|
model.apply(patch_device)
|
||
|
patch_device(model.encode_image)
|
||
|
patch_device(model.encode_text)
|
||
|
|
||
|
# patch dtype to float32 on CPU
|
||
|
if device == 'cpu':
|
||
|
float_holder = torch.jit.trace(
|
||
|
lambda: torch.ones([]).float(), example_inputs=[])
|
||
|
float_input = list(float_holder.graph.findNode('aten::to').inputs())[1]
|
||
|
float_node = float_input.node()
|
||
|
|
||
|
def patch_float(module):
|
||
|
graphs = [module.graph] if hasattr(module, 'graph') else []
|
||
|
if hasattr(module, 'forward1'):
|
||
|
graphs.append(module.forward1.graph)
|
||
|
|
||
|
for graph in graphs:
|
||
|
for node in graph.findAllNodes('aten::to'):
|
||
|
inputs = list(node.inputs())
|
||
|
for i in [
|
||
|
1, 2
|
||
|
]: # dtype can be the second or third argument to
|
||
|
# aten::to()
|
||
|
if inputs[i].node()['value'] == 5:
|
||
|
inputs[i].node().copyAttributes(float_node)
|
||
|
|
||
|
model.apply(patch_float)
|
||
|
patch_float(model.encode_image)
|
||
|
patch_float(model.encode_text)
|
||
|
|
||
|
model.float()
|
||
|
|
||
|
return model, transform
|
||
|
|
||
|
|
||
|
def tokenize(texts: Union[str, List[str]], context_length: int = 77):
|
||
|
"""Convert texts to tokens."""
|
||
|
if isinstance(texts, str):
|
||
|
texts = [texts]
|
||
|
|
||
|
sot_token = _tokenizer.encoder['<|startoftext|>']
|
||
|
eot_token = _tokenizer.encoder['<|endoftext|>']
|
||
|
# encode each template text phrase
|
||
|
all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token]
|
||
|
for text in texts]
|
||
|
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
|
||
|
|
||
|
for i, tokens in enumerate(all_tokens):
|
||
|
if len(tokens) > context_length:
|
||
|
raise RuntimeError(
|
||
|
f'Input {texts[i]} is too long for context length\
|
||
|
{context_length}')
|
||
|
result[i, :len(tokens)] = torch.tensor(tokens)
|
||
|
|
||
|
return result
|