209 lines
7.8 KiB
Python
209 lines
7.8 KiB
Python
|
# Copyright (c) OpenMMLab. All rights reserved.
|
||
|
import json
|
||
|
import warnings
|
||
|
|
||
|
from mmengine.dist import get_dist_info
|
||
|
from mmengine.logging import print_log
|
||
|
from mmengine.optim import DefaultOptimWrapperConstructor
|
||
|
|
||
|
from mmseg.registry import OPTIM_WRAPPER_CONSTRUCTORS
|
||
|
|
||
|
|
||
|
def get_layer_id_for_convnext(var_name, max_layer_id):
|
||
|
"""Get the layer id to set the different learning rates in ``layer_wise``
|
||
|
decay_type.
|
||
|
|
||
|
Args:
|
||
|
var_name (str): The key of the model.
|
||
|
max_layer_id (int): Maximum number of backbone layers.
|
||
|
|
||
|
Returns:
|
||
|
int: The id number corresponding to different learning rate in
|
||
|
``LearningRateDecayOptimizerConstructor``.
|
||
|
"""
|
||
|
|
||
|
if var_name in ('backbone.cls_token', 'backbone.mask_token',
|
||
|
'backbone.pos_embed'):
|
||
|
return 0
|
||
|
elif var_name.startswith('backbone.downsample_layers'):
|
||
|
stage_id = int(var_name.split('.')[2])
|
||
|
if stage_id == 0:
|
||
|
layer_id = 0
|
||
|
elif stage_id == 1:
|
||
|
layer_id = 2
|
||
|
elif stage_id == 2:
|
||
|
layer_id = 3
|
||
|
elif stage_id == 3:
|
||
|
layer_id = max_layer_id
|
||
|
return layer_id
|
||
|
elif var_name.startswith('backbone.stages'):
|
||
|
stage_id = int(var_name.split('.')[2])
|
||
|
block_id = int(var_name.split('.')[3])
|
||
|
if stage_id == 0:
|
||
|
layer_id = 1
|
||
|
elif stage_id == 1:
|
||
|
layer_id = 2
|
||
|
elif stage_id == 2:
|
||
|
layer_id = 3 + block_id // 3
|
||
|
elif stage_id == 3:
|
||
|
layer_id = max_layer_id
|
||
|
return layer_id
|
||
|
else:
|
||
|
return max_layer_id + 1
|
||
|
|
||
|
|
||
|
def get_stage_id_for_convnext(var_name, max_stage_id):
|
||
|
"""Get the stage id to set the different learning rates in ``stage_wise``
|
||
|
decay_type.
|
||
|
|
||
|
Args:
|
||
|
var_name (str): The key of the model.
|
||
|
max_stage_id (int): Maximum number of backbone layers.
|
||
|
|
||
|
Returns:
|
||
|
int: The id number corresponding to different learning rate in
|
||
|
``LearningRateDecayOptimizerConstructor``.
|
||
|
"""
|
||
|
|
||
|
if var_name in ('backbone.cls_token', 'backbone.mask_token',
|
||
|
'backbone.pos_embed'):
|
||
|
return 0
|
||
|
elif var_name.startswith('backbone.downsample_layers'):
|
||
|
return 0
|
||
|
elif var_name.startswith('backbone.stages'):
|
||
|
stage_id = int(var_name.split('.')[2])
|
||
|
return stage_id + 1
|
||
|
else:
|
||
|
return max_stage_id - 1
|
||
|
|
||
|
|
||
|
def get_layer_id_for_vit(var_name, max_layer_id):
|
||
|
"""Get the layer id to set the different learning rates.
|
||
|
|
||
|
Args:
|
||
|
var_name (str): The key of the model.
|
||
|
num_max_layer (int): Maximum number of backbone layers.
|
||
|
|
||
|
Returns:
|
||
|
int: Returns the layer id of the key.
|
||
|
"""
|
||
|
|
||
|
if var_name in ('backbone.cls_token', 'backbone.mask_token',
|
||
|
'backbone.pos_embed'):
|
||
|
return 0
|
||
|
elif var_name.startswith('backbone.patch_embed'):
|
||
|
return 0
|
||
|
elif var_name.startswith('backbone.layers'):
|
||
|
layer_id = int(var_name.split('.')[2])
|
||
|
return layer_id + 1
|
||
|
else:
|
||
|
return max_layer_id - 1
|
||
|
|
||
|
|
||
|
@OPTIM_WRAPPER_CONSTRUCTORS.register_module()
|
||
|
class LearningRateDecayOptimizerConstructor(DefaultOptimWrapperConstructor):
|
||
|
"""Different learning rates are set for different layers of backbone.
|
||
|
|
||
|
Note: Currently, this optimizer constructor is built for ConvNeXt,
|
||
|
BEiT and MAE.
|
||
|
"""
|
||
|
|
||
|
def add_params(self, params, module, **kwargs):
|
||
|
"""Add all parameters of module to the params list.
|
||
|
|
||
|
The parameters of the given module will be added to the list of param
|
||
|
groups, with specific rules defined by paramwise_cfg.
|
||
|
|
||
|
Args:
|
||
|
params (list[dict]): A list of param groups, it will be modified
|
||
|
in place.
|
||
|
module (nn.Module): The module to be added.
|
||
|
"""
|
||
|
|
||
|
parameter_groups = {}
|
||
|
print_log(f'self.paramwise_cfg is {self.paramwise_cfg}')
|
||
|
num_layers = self.paramwise_cfg.get('num_layers') + 2
|
||
|
decay_rate = self.paramwise_cfg.get('decay_rate')
|
||
|
decay_type = self.paramwise_cfg.get('decay_type', 'layer_wise')
|
||
|
print_log('Build LearningRateDecayOptimizerConstructor '
|
||
|
f'{decay_type} {decay_rate} - {num_layers}')
|
||
|
weight_decay = self.base_wd
|
||
|
for name, param in module.named_parameters():
|
||
|
if not param.requires_grad:
|
||
|
continue # frozen weights
|
||
|
if len(param.shape) == 1 or name.endswith('.bias') or name in (
|
||
|
'pos_embed', 'cls_token'):
|
||
|
group_name = 'no_decay'
|
||
|
this_weight_decay = 0.
|
||
|
else:
|
||
|
group_name = 'decay'
|
||
|
this_weight_decay = weight_decay
|
||
|
if 'layer_wise' in decay_type:
|
||
|
if 'ConvNeXt' in module.backbone.__class__.__name__:
|
||
|
layer_id = get_layer_id_for_convnext(
|
||
|
name, self.paramwise_cfg.get('num_layers'))
|
||
|
print_log(f'set param {name} as id {layer_id}')
|
||
|
elif 'BEiT' in module.backbone.__class__.__name__ or \
|
||
|
'MAE' in module.backbone.__class__.__name__:
|
||
|
layer_id = get_layer_id_for_vit(name, num_layers)
|
||
|
print_log(f'set param {name} as id {layer_id}')
|
||
|
else:
|
||
|
raise NotImplementedError()
|
||
|
elif decay_type == 'stage_wise':
|
||
|
if 'ConvNeXt' in module.backbone.__class__.__name__:
|
||
|
layer_id = get_stage_id_for_convnext(name, num_layers)
|
||
|
print_log(f'set param {name} as id {layer_id}')
|
||
|
else:
|
||
|
raise NotImplementedError()
|
||
|
group_name = f'layer_{layer_id}_{group_name}'
|
||
|
|
||
|
if group_name not in parameter_groups:
|
||
|
scale = decay_rate**(num_layers - layer_id - 1)
|
||
|
|
||
|
parameter_groups[group_name] = {
|
||
|
'weight_decay': this_weight_decay,
|
||
|
'params': [],
|
||
|
'param_names': [],
|
||
|
'lr_scale': scale,
|
||
|
'group_name': group_name,
|
||
|
'lr': scale * self.base_lr,
|
||
|
}
|
||
|
|
||
|
parameter_groups[group_name]['params'].append(param)
|
||
|
parameter_groups[group_name]['param_names'].append(name)
|
||
|
rank, _ = get_dist_info()
|
||
|
if rank == 0:
|
||
|
to_display = {}
|
||
|
for key in parameter_groups:
|
||
|
to_display[key] = {
|
||
|
'param_names': parameter_groups[key]['param_names'],
|
||
|
'lr_scale': parameter_groups[key]['lr_scale'],
|
||
|
'lr': parameter_groups[key]['lr'],
|
||
|
'weight_decay': parameter_groups[key]['weight_decay'],
|
||
|
}
|
||
|
print_log(f'Param groups = {json.dumps(to_display, indent=2)}')
|
||
|
params.extend(parameter_groups.values())
|
||
|
|
||
|
|
||
|
@OPTIM_WRAPPER_CONSTRUCTORS.register_module()
|
||
|
class LayerDecayOptimizerConstructor(LearningRateDecayOptimizerConstructor):
|
||
|
"""Different learning rates are set for different layers of backbone.
|
||
|
|
||
|
Note: Currently, this optimizer constructor is built for BEiT,
|
||
|
and it will be deprecated.
|
||
|
Please use ``LearningRateDecayOptimizerConstructor`` instead.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, optim_wrapper_cfg, paramwise_cfg):
|
||
|
warnings.warn('DeprecationWarning: Original '
|
||
|
'LayerDecayOptimizerConstructor of BEiT '
|
||
|
'will be deprecated. Please use '
|
||
|
'LearningRateDecayOptimizerConstructor instead, '
|
||
|
'and set decay_type = layer_wise_vit in paramwise_cfg.')
|
||
|
paramwise_cfg.update({'decay_type': 'layer_wise_vit'})
|
||
|
warnings.warn('DeprecationWarning: Layer_decay_rate will '
|
||
|
'be deleted, please use decay_rate instead.')
|
||
|
paramwise_cfg['decay_rate'] = paramwise_cfg.pop('layer_decay_rate')
|
||
|
super(LayerDecayOptimizerConstructor,
|
||
|
self).__init__(optim_wrapper_cfg, paramwise_cfg)
|