mmsegmentation/docs/zh_cn/advanced_guides/structures.md

103 lines
3.8 KiB
Markdown
Raw Normal View History

# 数据结构
为了统一模型和各功能模块之间的输入和输出的接口, 在 OpenMMLab 2.0 MMEngine 中定义了一套抽象数据结构, 实现了基础的增/删/查/改功能, 支持不同设备间的数据迁移, 也支持了如
`.cpu()`, `.cuda()`, `.get()``.detach()` 的类字典和张量的操作。具体可以参考 [MMEngine 文档](https://github.com/open-mmlab/mmengine/blob/main/docs/en/advanced_tutorials/data_element.md)。
同样的, MMSegmentation 亦遵循了 OpenMMLab 2.0 各模块间的接口协议, 定义了 `SegDataSample` 用来封装语义分割任务所需要的数据。
## 语义分割数据 SegDataSample
[SegDataSample](mmseg.structures.SegDataSample) 包括了三个主要数据字段 `gt_sem_seg`, `pred_sem_seg``seg_logits`, 分别用来存放标注信息, 预测结果和预测的未归一化前的 logits 值。
| 字段 | 类型 | 描述 |
| -------------- | ------------------------- | ------------------------------- |
| gt_sem_seg | [`PixelData`](#pixeldata) | 图像标注信息. |
| pred_instances | [`PixelData`](#pixeldata) | 图像预测结果. |
| seg_logits | [`PixelData`](#pixeldata) | 模型预测未归一化前的 logits 值. |
以下示例代码展示了 `SegDataSample` 的使用方法:
```python
import torch
from mmengine.structures import PixelData
from mmseg.structures import SegDataSample
img_meta = dict(img_shape=(4, 4, 3),
pad_shape=(4, 4, 3))
data_sample = SegDataSample()
# 定义 gt_segmentations 用于封装模型的输出信息
gt_segmentations = PixelData(metainfo=img_meta)
gt_segmentations.data = torch.randint(0, 2, (1, 4, 4))
# 增加和处理 SegDataSample 中的属性
data_sample.gt_sem_seg = gt_segmentations
assert 'gt_sem_seg' in data_sample
assert 'data' in data_sample.gt_sem_seg
assert 'img_shape' in data_sample.gt_sem_seg.metainfo_keys()
print(data_sample.gt_sem_seg.shape)
'''
(4, 4)
'''
print(data_sample)
'''
<SegDataSample(
META INFORMATION
DATA FIELDS
gt_sem_seg: <PixelData(
META INFORMATION
img_shape: (4, 4, 3)
pad_shape: (4, 4, 3)
DATA FIELDS
data: tensor([[[1, 1, 1, 0],
[1, 0, 1, 1],
[1, 1, 1, 1],
[0, 1, 0, 1]]])
) at 0x1c2b4156460>
) at 0x1c2aae44d60>
'''
# 删除和修改 SegDataSample 中的属性
data_sample = SegDataSample()
gt_segmentations = PixelData(metainfo=img_meta)
gt_segmentations.data = torch.randint(0, 2, (1, 4, 4))
data_sample.gt_sem_seg = gt_segmentations
data_sample.gt_sem_seg.set_metainfo(dict(img_shape=(4,4,9), pad_shape=(4,4,9)))
del data_sample.gt_sem_seg.img_shape
# 类张量的操作
data_sample = SegDataSample()
gt_segmentations = PixelData(metainfo=img_meta)
gt_segmentations.data = torch.randint(0, 2, (1, 4, 4))
cuda_gt_segmentations = gt_segmentations.cuda()
cuda_gt_segmentations = gt_segmentations.to('cuda:0')
cpu_gt_segmentations = cuda_gt_segmentations.cpu()
cpu_gt_segmentations = cuda_gt_segmentations.to('cpu')
```
## 在 SegDataSample 中自定义新的属性
如果你想在 `SegDataSample` 中自定义新的属性,你可以参考下面的 [SegDataSample](https://github.com/open-mmlab/mmsegmentation/blob/1.x/mmseg/structures/seg_data_sample.py) 示例:
```python
class SegDataSample(BaseDataElement):
...
@property
def xxx_property(self) -> xxxData:
return self._xxx_property
@xxx_property.setter
def xxx_property(self, value: xxxData) -> None:
self.set_field(value, '_xxx_property', dtype=xxxData)
@xxx_property.deleter
def xxx_property(self) -> None:
del self._xxx_property
```
这样一个新的属性 `xxx_property` 就将被增加到 `SegDataSample` 里面了。