202 lines
6.5 KiB
Markdown
202 lines
6.5 KiB
Markdown
|
# wandb记录特征图可视化
|
|||
|
|
|||
|
MMSegmentation 1.x 提供了 Weights & Biases 的后端支持,方便对项目代码结果的可视化和管理。
|
|||
|
|
|||
|
## Wandb的配置
|
|||
|
|
|||
|
安装 Weights & Biases 的过程可以参考 [官方安装指南](https://docs.wandb.ai/quickstart),具体的步骤如下:
|
|||
|
|
|||
|
```shell
|
|||
|
pip install wandb
|
|||
|
wandb login
|
|||
|
```
|
|||
|
|
|||
|
在 `vis_backend` 中添加 `WandbVisBackend`。
|
|||
|
|
|||
|
```python
|
|||
|
vis_backends=[dict(type='LocalVisBackend'),
|
|||
|
dict(type='TensorboardVisBackend'),
|
|||
|
dict(type='WandbVisBackend')]
|
|||
|
```
|
|||
|
|
|||
|
## 测试数据和结果及特征图的可视化
|
|||
|
|
|||
|
`SegLocalVisualizer` 是继承自 MMEngine 中 `Visualizer` 类的子类,适用于 MMSegmentation 可视化,有关 `Visualizer` 的详细信息请参考在 MMEngine 中的[可视化教程](https://mmengine.readthedocs.io/zh_CN/latest/advanced_tutorials/visualization.html) 。
|
|||
|
|
|||
|
以下是一个关于 `SegLocalVisualizer` 的示例,首先你可以使用下面的命令下载这个案例中的数据:
|
|||
|
|
|||
|
<div align=center>
|
|||
|
<img src="https://user-images.githubusercontent.com/24582831/189833109-eddad58f-f777-4fc0-b98a-6bd429143b06.png" width="70%"/>
|
|||
|
</div>
|
|||
|
|
|||
|
```shell
|
|||
|
wget https://user-images.githubusercontent.com/24582831/189833109-eddad58f-f777-4fc0-b98a-6bd429143b06.png --output-document aachen_000000_000019_leftImg8bit.png
|
|||
|
wget https://user-images.githubusercontent.com/24582831/189833143-15f60f8a-4d1e-4cbb-a6e7-5e2233869fac.png --output-document aachen_000000_000019_gtFine_labelTrainIds.png
|
|||
|
|
|||
|
wget https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x1024_40k_cityscapes/ann_r50-d8_512x1024_40k_cityscapes_20200605_095211-049fc292.pth
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
```python
|
|||
|
# Copyright (c) OpenMMLab. All rights reserved.
|
|||
|
from argparse import ArgumentParser
|
|||
|
from typing import Type
|
|||
|
|
|||
|
import mmcv
|
|||
|
import torch
|
|||
|
import torch.nn as nn
|
|||
|
|
|||
|
from mmengine.model import revert_sync_batchnorm
|
|||
|
from mmengine.structures import PixelData
|
|||
|
from mmseg.apis import inference_model, init_model
|
|||
|
from mmseg.structures import SegDataSample
|
|||
|
from mmseg.utils import register_all_modules
|
|||
|
from mmseg.visualization import SegLocalVisualizer
|
|||
|
|
|||
|
|
|||
|
class Recorder:
|
|||
|
"""record the forward output feature map and save to data_buffer."""
|
|||
|
|
|||
|
def __init__(self) -> None:
|
|||
|
self.data_buffer = list()
|
|||
|
|
|||
|
def __enter__(self, ):
|
|||
|
self._data_buffer = list()
|
|||
|
|
|||
|
def record_data_hook(self, model: nn.Module, input: Type, output: Type):
|
|||
|
self.data_buffer.append(output)
|
|||
|
|
|||
|
def __exit__(self, *args, **kwargs):
|
|||
|
pass
|
|||
|
|
|||
|
|
|||
|
def visualize(args, model, recorder, result):
|
|||
|
seg_visualizer = SegLocalVisualizer(
|
|||
|
vis_backends=[dict(type='WandbVisBackend')],
|
|||
|
save_dir='temp_dir',
|
|||
|
alpha=0.5)
|
|||
|
seg_visualizer.dataset_meta = dict(
|
|||
|
classes=model.dataset_meta['classes'],
|
|||
|
palette=model.dataset_meta['palette'])
|
|||
|
|
|||
|
image = mmcv.imread(args.img, 'color')
|
|||
|
|
|||
|
seg_visualizer.add_datasample(
|
|||
|
name='predict',
|
|||
|
image=image,
|
|||
|
data_sample=result,
|
|||
|
draw_gt=False,
|
|||
|
draw_pred=True,
|
|||
|
wait_time=0,
|
|||
|
out_file=None,
|
|||
|
show=False)
|
|||
|
|
|||
|
# add feature map to wandb visualizer
|
|||
|
for i in range(len(recorder.data_buffer)):
|
|||
|
feature = recorder.data_buffer[i][0] # remove the batch
|
|||
|
drawn_img = seg_visualizer.draw_featmap(
|
|||
|
feature, image, channel_reduction='select_max')
|
|||
|
seg_visualizer.add_image(f'feature_map{i}', drawn_img)
|
|||
|
|
|||
|
if args.gt_mask:
|
|||
|
sem_seg = mmcv.imread(args.gt_mask, 'unchanged')
|
|||
|
sem_seg = torch.from_numpy(sem_seg)
|
|||
|
gt_mask = dict(data=sem_seg)
|
|||
|
gt_mask = PixelData(**gt_mask)
|
|||
|
data_sample = SegDataSample()
|
|||
|
data_sample.gt_sem_seg = gt_mask
|
|||
|
|
|||
|
seg_visualizer.add_datasample(
|
|||
|
name='gt_mask',
|
|||
|
image=image,
|
|||
|
data_sample=data_sample,
|
|||
|
draw_gt=True,
|
|||
|
draw_pred=False,
|
|||
|
wait_time=0,
|
|||
|
out_file=None,
|
|||
|
show=False)
|
|||
|
|
|||
|
seg_visualizer.add_image('image', image)
|
|||
|
|
|||
|
|
|||
|
def main():
|
|||
|
parser = ArgumentParser(
|
|||
|
description='Draw the Feature Map During Inference')
|
|||
|
parser.add_argument('img', help='Image file')
|
|||
|
parser.add_argument('config', help='Config file')
|
|||
|
parser.add_argument('checkpoint', help='Checkpoint file')
|
|||
|
parser.add_argument('--gt_mask', default=None, help='Path of gt mask file')
|
|||
|
parser.add_argument('--out-file', default=None, help='Path to output file')
|
|||
|
parser.add_argument(
|
|||
|
'--device', default='cuda:0', help='Device used for inference')
|
|||
|
parser.add_argument(
|
|||
|
'--opacity',
|
|||
|
type=float,
|
|||
|
default=0.5,
|
|||
|
help='Opacity of painted segmentation map. In (0, 1] range.')
|
|||
|
parser.add_argument(
|
|||
|
'--title', default='result', help='The image identifier.')
|
|||
|
args = parser.parse_args()
|
|||
|
|
|||
|
register_all_modules()
|
|||
|
|
|||
|
# build the model from a config file and a checkpoint file
|
|||
|
model = init_model(args.config, args.checkpoint, device=args.device)
|
|||
|
if args.device == 'cpu':
|
|||
|
model = revert_sync_batchnorm(model)
|
|||
|
|
|||
|
# show all named module in the model and use it in source list below
|
|||
|
for name, module in model.named_modules():
|
|||
|
print(name)
|
|||
|
|
|||
|
source = [
|
|||
|
'decode_head.fusion.stages.0.query_project.activate',
|
|||
|
'decode_head.context.stages.0.key_project.activate',
|
|||
|
'decode_head.context.bottleneck.activate'
|
|||
|
]
|
|||
|
source = dict.fromkeys(source)
|
|||
|
|
|||
|
count = 0
|
|||
|
recorder = Recorder()
|
|||
|
# registry the forward hook
|
|||
|
for name, module in model.named_modules():
|
|||
|
if name in source:
|
|||
|
count += 1
|
|||
|
module.register_forward_hook(recorder.record_data_hook)
|
|||
|
if count == len(source):
|
|||
|
break
|
|||
|
|
|||
|
with recorder:
|
|||
|
# test a single image, and record feature map to data_buffer
|
|||
|
result = inference_model(model, args.img)
|
|||
|
|
|||
|
visualize(args, model, recorder, result)
|
|||
|
|
|||
|
|
|||
|
if __name__ == '__main__':
|
|||
|
main()
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
将上述代码保存为 feature_map_visual.py,在终端执行如下代码
|
|||
|
|
|||
|
```shell
|
|||
|
python feature_map_visual.py ${图像} ${配置文件} ${检查点文件} [可选参数]
|
|||
|
```
|
|||
|
|
|||
|
样例
|
|||
|
|
|||
|
```shell
|
|||
|
python feature_map_visual.py \
|
|||
|
aachen_000000_000019_leftImg8bit.png \
|
|||
|
configs/ann/ann_r50-d8_4xb2-40k_cityscapes-512x1024.py \
|
|||
|
ann_r50-d8_512x1024_40k_cityscapes_20200605_095211-049fc292.pth \
|
|||
|
--gt_mask aachen_000000_000019_gtFine_labelTrainIds.png
|
|||
|
```
|
|||
|
|
|||
|
可视化后的图像结果和它的对应的 feature map图像会出现在wandb账户中
|
|||
|
|
|||
|
<div align=center>
|
|||
|
<img src="https://user-images.githubusercontent.com/76149310/217520321-647f5bf9-eef2-446d-a9e8-5ca7b621d500.png">
|
|||
|
</div>
|