296 lines
11 KiB
Python
Raw Normal View History

# Copyright (c) OpenMMLab. All rights reserved.
import copy
import os.path as osp
import tempfile
import mmcv
import numpy as np
from mmcv.transforms import LoadImageFromFile
2023-08-17 11:39:44 +08:00
from mmseg.datasets.transforms import LoadAnnotations # noqa
from mmseg.datasets.transforms import (LoadBiomedicalAnnotation,
LoadBiomedicalData,
LoadBiomedicalImageFromFile,
2023-08-17 11:39:44 +08:00
LoadDepthAnnotation,
LoadImageFromNDArray)
class TestLoading:
@classmethod
def setup_class(cls):
cls.data_prefix = osp.join(osp.dirname(__file__), '../data')
def test_load_img(self):
results = dict(img_path=osp.join(self.data_prefix, 'color.jpg'))
transform = LoadImageFromFile()
results = transform(copy.deepcopy(results))
assert results['img_path'] == osp.join(self.data_prefix, 'color.jpg')
assert results['img'].shape == (288, 512, 3)
assert results['img'].dtype == np.uint8
assert results['ori_shape'] == results['img'].shape[:2]
assert repr(transform) == transform.__class__.__name__ + \
2022-06-27 14:36:18 +00:00
"(ignore_empty=False, to_float32=False, color_type='color'," + \
" imdecode_backend='cv2', backend_args=None)"
# to_float32
transform = LoadImageFromFile(to_float32=True)
results = transform(copy.deepcopy(results))
assert results['img'].dtype == np.float32
# gray image
results = dict(img_path=osp.join(self.data_prefix, 'gray.jpg'))
transform = LoadImageFromFile()
results = transform(copy.deepcopy(results))
assert results['img'].shape == (288, 512, 3)
assert results['img'].dtype == np.uint8
transform = LoadImageFromFile(color_type='unchanged')
results = transform(copy.deepcopy(results))
assert results['img'].shape == (288, 512)
assert results['img'].dtype == np.uint8
def test_load_seg(self):
seg_path = osp.join(self.data_prefix, 'seg.png')
results = dict(
seg_map_path=seg_path, reduce_zero_label=True, seg_fields=[])
transform = LoadAnnotations()
results = transform(copy.deepcopy(results))
assert results['gt_seg_map'].shape == (288, 512)
assert results['gt_seg_map'].dtype == np.uint8
assert repr(transform) == transform.__class__.__name__ + \
"(reduce_zero_label=True, imdecode_backend='pillow', " + \
'backend_args=None)'
# reduce_zero_label
transform = LoadAnnotations(reduce_zero_label=True)
results = transform(copy.deepcopy(results))
assert results['gt_seg_map'].shape == (288, 512)
assert results['gt_seg_map'].dtype == np.uint8
def test_load_seg_custom_classes(self):
test_img = np.random.rand(10, 10)
test_gt = np.zeros_like(test_img)
test_gt[2:4, 2:4] = 1
test_gt[2:4, 6:8] = 2
test_gt[6:8, 2:4] = 3
test_gt[6:8, 6:8] = 4
tmp_dir = tempfile.TemporaryDirectory()
img_path = osp.join(tmp_dir.name, 'img.jpg')
gt_path = osp.join(tmp_dir.name, 'gt.png')
mmcv.imwrite(test_img, img_path)
mmcv.imwrite(test_gt, gt_path)
# test only train with label with id 3
results = dict(
img_path=img_path,
seg_map_path=gt_path,
label_map={
0: 0,
1: 0,
2: 0,
3: 1,
4: 0
},
reduce_zero_label=False,
seg_fields=[])
load_imgs = LoadImageFromFile()
results = load_imgs(copy.deepcopy(results))
load_anns = LoadAnnotations()
results = load_anns(copy.deepcopy(results))
gt_array = results['gt_seg_map']
true_mask = np.zeros_like(gt_array)
true_mask[6:8, 2:4] = 1
assert results['seg_fields'] == ['gt_seg_map']
assert gt_array.shape == (10, 10)
assert gt_array.dtype == np.uint8
np.testing.assert_array_equal(gt_array, true_mask)
# test only train with label with id 4 and 3
results = dict(
img_path=osp.join(self.data_prefix, 'color.jpg'),
seg_map_path=gt_path,
label_map={
0: 0,
1: 0,
2: 0,
3: 2,
4: 1
},
reduce_zero_label=False,
seg_fields=[])
load_imgs = LoadImageFromFile()
results = load_imgs(copy.deepcopy(results))
load_anns = LoadAnnotations()
results = load_anns(copy.deepcopy(results))
gt_array = results['gt_seg_map']
true_mask = np.zeros_like(gt_array)
true_mask[6:8, 2:4] = 2
true_mask[6:8, 6:8] = 1
assert results['seg_fields'] == ['gt_seg_map']
assert gt_array.shape == (10, 10)
assert gt_array.dtype == np.uint8
np.testing.assert_array_equal(gt_array, true_mask)
[Fix] Switch order of `reduce_zero_label` and applying `label_map` in 1.x (#2517) This is an almost exact duplicate of #2500 (that was made to the `master` branch) now applied to the `1.x` branch. --- ## Motivation I want to fix a bug through this PR. The bug occurs when two options -- `reduce_zero_label=True`, and custom classes are used. `reduce_zero_label` remaps the GT seg labels by remapping the zero-class to 255 which is ignored. Conceptually, this should occur *before* the `label_map` is applied, which maps *already reduced labels*. However, currently, the `label_map` is applied before the zero label is reduced. ## Modification The modification is simple: - I've just interchanged the order of the two operations by moving a few lines from bottom to top. - I've added a test that passes when the fix is introduced, and fails on the original `master` branch. ## BC-breaking (Optional) I do not anticipate this change braking any backward-compatibility. ## Checklist - [x] Pre-commit or other linting tools are used to fix the potential lint issues. - _I've fixed all linting/pre-commit errors._ - [x] The modification is covered by complete unit tests. If not, please add more unit test to ensure the correctness. - _I've added a unit test._ - [x] If the modification has potential influence on downstream projects, this PR should be tested with downstream projects, like MMDet or MMDet3D. - _I don't think this change affects MMDet or MMDet3D._ - [x] The documentation has been modified accordingly, like docstring or example tutorials. - _This change fixes an existing bug and doesn't require modifying any documentation/docstring._
2023-01-29 23:17:15 -05:00
# test with removing a class and reducing zero label simultaneously
results = dict(
img_path=img_path,
seg_map_path=gt_path,
# since reduce_zero_label is True, there are only 4 real classes.
# if the full set of classes is ["A", "B", "C", "D"], the
# following label map simulates the dataset option
# classes=["A", "C", "D"] which removes class "B".
label_map={
0: 0,
1: 255, # simulate removing class 1
2: 1,
3: 2
},
reduce_zero_label=True, # reduce zero label
seg_fields=[])
load_imgs = LoadImageFromFile()
results = load_imgs(copy.deepcopy(results))
# reduce zero label
load_anns = LoadAnnotations()
results = load_anns(copy.deepcopy(results))
gt_array = results['gt_seg_map']
true_mask = np.ones_like(gt_array) * 255 # all zeros get mapped to 255
true_mask[2:4, 2:4] = 0 # 1s are reduced to class 0 mapped to class 0
true_mask[2:4, 6:8] = 255 # 2s are reduced to class 1 which is removed
true_mask[6:8, 2:4] = 1 # 3s are reduced to class 2 mapped to class 1
true_mask[6:8, 6:8] = 2 # 4s are reduced to class 3 mapped to class 2
assert results['seg_fields'] == ['gt_seg_map']
assert gt_array.shape == (10, 10)
assert gt_array.dtype == np.uint8
np.testing.assert_array_equal(gt_array, true_mask)
# test no custom classes
results = dict(
img_path=img_path,
seg_map_path=gt_path,
reduce_zero_label=False,
seg_fields=[])
load_imgs = LoadImageFromFile()
results = load_imgs(copy.deepcopy(results))
load_anns = LoadAnnotations()
results = load_anns(copy.deepcopy(results))
gt_array = results['gt_seg_map']
assert results['seg_fields'] == ['gt_seg_map']
assert gt_array.shape == (10, 10)
assert gt_array.dtype == np.uint8
np.testing.assert_array_equal(gt_array, test_gt)
tmp_dir.cleanup()
def test_load_image_from_ndarray(self):
results = {'img': np.zeros((256, 256, 3), dtype=np.uint8)}
transform = LoadImageFromNDArray()
results = transform(results)
assert results['img'].shape == (256, 256, 3)
assert results['img'].dtype == np.uint8
assert results['img_shape'] == (256, 256)
assert results['ori_shape'] == (256, 256)
# to_float32
transform = LoadImageFromNDArray(to_float32=True)
results = transform(copy.deepcopy(results))
assert results['img'].dtype == np.float32
# test repr
transform = LoadImageFromNDArray()
assert repr(transform) == ('LoadImageFromNDArray('
'ignore_empty=False, '
'to_float32=False, '
"color_type='color', "
"imdecode_backend='cv2', "
'backend_args=None)')
def test_load_biomedical_img(self):
results = dict(
img_path=osp.join(self.data_prefix, 'biomedical.nii.gz'))
transform = LoadBiomedicalImageFromFile()
results = transform(copy.deepcopy(results))
assert results['img_path'] == osp.join(self.data_prefix,
'biomedical.nii.gz')
assert len(results['img'].shape) == 4
assert results['img'].dtype == np.float32
assert results['ori_shape'] == results['img'].shape[1:]
assert repr(transform) == ('LoadBiomedicalImageFromFile('
"decode_backend='nifti', "
'to_xyz=False, '
'to_float32=True, '
'backend_args=None)')
def test_load_biomedical_annotation(self):
results = dict(
seg_map_path=osp.join(self.data_prefix, 'biomedical_ann.nii.gz'))
transform = LoadBiomedicalAnnotation()
results = transform(copy.deepcopy(results))
assert len(results['gt_seg_map'].shape) == 3
assert results['gt_seg_map'].dtype == np.float32
def test_load_biomedical_data(self):
input_results = dict(
img_path=osp.join(self.data_prefix, 'biomedical.npy'))
transform = LoadBiomedicalData(with_seg=True)
results = transform(copy.deepcopy(input_results))
assert results['img_path'] == osp.join(self.data_prefix,
'biomedical.npy')
assert results['img'][0].shape == results['gt_seg_map'].shape
assert results['img'].dtype == np.float32
assert results['ori_shape'] == results['img'].shape[1:]
assert repr(transform) == ('LoadBiomedicalData('
'with_seg=True, '
"decode_backend='numpy', "
'to_xyz=False, '
'backend_args=None)')
transform = LoadBiomedicalData(with_seg=False)
results = transform(copy.deepcopy(input_results))
assert len(results['img'].shape) == 4
assert results.get('gt_seg_map') is None
assert repr(transform) == ('LoadBiomedicalData('
'with_seg=False, '
"decode_backend='numpy', "
'to_xyz=False, '
'backend_args=None)')
2023-08-17 11:39:44 +08:00
def test_load_depth_annotation(self):
input_results = dict(
img_path='tests/data/pseudo_nyu_dataset/images/'
'bookstore_0001d_00001.jpg',
depth_map_path='tests/data/pseudo_nyu_dataset/'
'annotations/bookstore_0001d_00001.png',
category_id=-1,
seg_fields=[])
transform = LoadDepthAnnotation(depth_rescale_factor=0.001)
results = transform(input_results)
assert 'gt_depth_map' in results
assert results['gt_depth_map'].shape[:2] == mmcv.imread(
input_results['depth_map_path']).shape[:2]
assert results['gt_depth_map'].dtype == np.float32
assert 'gt_depth_map' in results['seg_fields']