mmsegmentation/tests/test_datasets/test_formatting.py

53 lines
1.9 KiB
Python
Raw Normal View History

# Copyright (c) OpenMMLab. All rights reserved.
import copy
import os.path as osp
import unittest
import numpy as np
from mmengine.data import BaseDataElement
from mmseg.core import SegDataSample
from mmseg.datasets.pipelines import PackSegInputs
class TestPackSegInputs(unittest.TestCase):
def setUp(self):
"""Setup the model and optimizer which are used in every test method.
TestCase calls functions in this order: setUp() -> testMethod() ->
tearDown() -> cleanUp()
"""
data_prefix = osp.join(osp.dirname(__file__), '../../data')
img_path = osp.join(data_prefix, 'color.jpg')
rng = np.random.RandomState(0)
self.results = {
'img_path': img_path,
'ori_shape': (300, 400),
'pad_shape': (600, 800),
'img_shape': (600, 800),
'scale_factor': 2.0,
'flip': False,
'flip_direction': 'horizontal',
'img_norm_cfg': None,
'img': rng.rand(300, 400),
'gt_seg_map': rng.rand(300, 400),
}
self.meta_keys = ('img_path', 'ori_shape', 'img_shape', 'pad_shape',
'scale_factor', 'flip', 'flip_direction')
def test_transform(self):
transform = PackSegInputs(meta_keys=self.meta_keys)
results = transform(copy.deepcopy(self.results))
self.assertIn('data_sample', results)
self.assertIsInstance(results['data_sample'], SegDataSample)
self.assertIsInstance(results['data_sample'].gt_sem_seg,
BaseDataElement)
self.assertEqual(results['data_sample'].ori_shape,
results['data_sample'].gt_sem_seg.shape)
def test_repr(self):
transform = PackSegInputs(meta_keys=self.meta_keys)
self.assertEqual(
repr(transform), f'PackSegInputs(meta_keys={self.meta_keys})')