mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
[Fix] Remove fp16
folder in configs
. (#1031)
* remove fp16 folder * remove fp16 in docs * fix some typos * fix some typos * fix fp16 in yml
This commit is contained in:
parent
d4ec8ef963
commit
008856a84c
@ -116,8 +116,8 @@ vit = [
|
||||
]
|
||||
fp16 = [
|
||||
dict(
|
||||
config='configs/fp16/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes.py', # noqa
|
||||
checkpoint='deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes-cc58bc8d.pth', # noqa
|
||||
config='configs/deeplabv3plus/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes.py', # noqa
|
||||
checkpoint='deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230920-f1104f4b.pth', # noqa
|
||||
eval='mIoU',
|
||||
metric=dict(mIoU=80.46),
|
||||
)
|
||||
|
@ -15,5 +15,5 @@ configs/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_80k_cityscapes.py
|
||||
configs/deeplabv3plus/deeplabv3plus_r50-d8_769x769_80k_cityscapes.py
|
||||
configs/vit/upernet_vit-b16_ln_mln_512x512_160k_ade20k.py
|
||||
configs/vit/upernet_deit-s16_ln_mln_512x512_160k_ade20k.py
|
||||
configs/fp16/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes.py
|
||||
configs/deeplabv3plus/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes.py
|
||||
configs/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K.py
|
||||
|
@ -35,7 +35,7 @@ echo 'configs/vit/upernet_vit-b16_ln_mln_512x512_160k_ade20k.py' &
|
||||
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 tools/slurm_test.sh $PARTITION upernet_vit-b16_ln_mln_512x512_160k_ade20k configs/vit/upernet_vit-b16_ln_mln_512x512_160k_ade20k.py $CHECKPOINT_DIR/upernet_vit-b16_ln_mln_512x512_160k_ade20k-f444c077.pth --eval mIoU --work-dir work_dirs/benchmark_evaluation/upernet_vit-b16_ln_mln_512x512_160k_ade20k --options dist_params.port=28186 &
|
||||
echo 'configs/vit/upernet_deit-s16_ln_mln_512x512_160k_ade20k.py' &
|
||||
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 tools/slurm_test.sh $PARTITION upernet_deit-s16_ln_mln_512x512_160k_ade20k configs/vit/upernet_deit-s16_ln_mln_512x512_160k_ade20k.py $CHECKPOINT_DIR/upernet_deit-s16_ln_mln_512x512_160k_ade20k-c0cd652f.pth --eval mIoU --work-dir work_dirs/benchmark_evaluation/upernet_deit-s16_ln_mln_512x512_160k_ade20k --options dist_params.port=28187 &
|
||||
echo 'configs/fp16/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes.py' &
|
||||
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 tools/slurm_test.sh $PARTITION deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes configs/fp16/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes.py $CHECKPOINT_DIR/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes-cc58bc8d.pth --eval mIoU --work-dir work_dirs/benchmark_evaluation/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes --options dist_params.port=28188 &
|
||||
echo 'configs/deeplabv3plus/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes.py' &
|
||||
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 tools/slurm_test.sh $PARTITION deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes configs/deeplabv3plus/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes.py $CHECKPOINT_DIR/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes-cc58bc8d.pth --eval mIoU --work-dir work_dirs/benchmark_evaluation/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes --options dist_params.port=28188 &
|
||||
echo 'configs/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K.py' &
|
||||
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 tools/slurm_test.sh $PARTITION upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K configs/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K.py $CHECKPOINT_DIR/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth --eval mIoU --work-dir work_dirs/benchmark_evaluation/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K --options dist_params.port=28189 &
|
||||
|
@ -34,7 +34,7 @@ echo 'configs/vit/upernet_vit-b16_ln_mln_512x512_160k_ade20k.py' &
|
||||
GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh $PARTITION upernet_vit-b16_ln_mln_512x512_160k_ade20k configs/vit/upernet_vit-b16_ln_mln_512x512_160k_ade20k.py --options checkpoint_config.max_keep_ckpts=1 dist_params.port=24742 --work-dir work_dirs/vit/upernet_vit-b16_ln_mln_512x512_160k_ade20k >/dev/null &
|
||||
echo 'configs/vit/upernet_deit-s16_ln_mln_512x512_160k_ade20k.py' &
|
||||
GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh $PARTITION upernet_deit-s16_ln_mln_512x512_160k_ade20k configs/vit/upernet_deit-s16_ln_mln_512x512_160k_ade20k.py --options checkpoint_config.max_keep_ckpts=1 dist_params.port=24743 --work-dir work_dirs/vit/upernet_deit-s16_ln_mln_512x512_160k_ade20k >/dev/null &
|
||||
echo 'configs/fp16/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes.py' &
|
||||
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 ./tools/slurm_train.sh $PARTITION deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes configs/fp16/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes.py --options checkpoint_config.max_keep_ckpts=1 dist_params.port=24744 --work-dir work_dirs/fp16/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes >/dev/null &
|
||||
echo 'configs/deeplabv3plus/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes.py' &
|
||||
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 ./tools/slurm_train.sh $PARTITION deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes configs/deeplabv3plus/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes.py --options checkpoint_config.max_keep_ckpts=1 dist_params.port=24744 --work-dir work_dirs/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes >/dev/null &
|
||||
echo 'configs/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K.py' &
|
||||
GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh $PARTITION upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K configs/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K.py --options checkpoint_config.max_keep_ckpts=1 dist_params.port=24745 --work-dir work_dirs/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K >/dev/null &
|
||||
|
@ -201,7 +201,7 @@ def parse_md(md_file):
|
||||
'batch size':
|
||||
1,
|
||||
'mode':
|
||||
'FP32',
|
||||
'FP32' if 'fp16' not in config else 'FP16',
|
||||
'resolution':
|
||||
f'({crop_size[0]},{crop_size[1]})'
|
||||
}]
|
||||
|
@ -73,7 +73,6 @@ Supported methods:
|
||||
- [x] [UNet (MICCAI'2016/Nat. Methods'2019)](configs/unet)
|
||||
- [x] [PSPNet (CVPR'2017)](configs/pspnet)
|
||||
- [x] [DeepLabV3 (ArXiv'2017)](configs/deeplabv3)
|
||||
- [x] [Mixed Precision (FP16) Training (ArXiv'2017)](configs/fp16)
|
||||
- [x] [BiSeNetV1 (ECCV'2018)](configs/bisenetv1)
|
||||
- [x] [PSANet (ECCV'2018)](configs/psanet)
|
||||
- [x] [DeepLabV3+ (CVPR'2018)](configs/deeplabv3plus)
|
||||
|
@ -72,7 +72,6 @@ MMSegmentation 是一个基于 PyTorch 的语义分割开源工具箱。它是 O
|
||||
- [x] [UNet (MICCAI'2016/Nat. Methods'2019)](configs/unet)
|
||||
- [x] [PSPNet (CVPR'2017)](configs/pspnet)
|
||||
- [x] [DeepLabV3 (ArXiv'2017)](configs/deeplabv3)
|
||||
- [x] [Mixed Precision (FP16) Training (ArXiv'2017)](configs/fp16)
|
||||
- [x] [BiSeNetV1 (ECCV'2018)](configs/bisenetv1)
|
||||
- [x] [PSANet (ECCV'2018)](configs/psanet)
|
||||
- [x] [DeepLabV3+ (CVPR'2018)](configs/deeplabv3plus)
|
||||
|
@ -75,7 +75,7 @@ Models:
|
||||
hardware: V100
|
||||
backend: PyTorch
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
mode: FP16
|
||||
resolution: (1024,1024)
|
||||
memory (GB): 5.77
|
||||
Results:
|
||||
|
@ -39,6 +39,7 @@
|
||||
| DeepLabV3 | R-18-D8 | 512x1024 | 80000 | 1.7 | 13.78 | 76.70 | 78.27 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3/deeplabv3_r18-d8_512x1024_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18-d8_512x1024_80k_cityscapes/deeplabv3_r18-d8_512x1024_80k_cityscapes_20201225_021506-23dffbe2.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18-d8_512x1024_80k_cityscapes/deeplabv3_r18-d8_512x1024_80k_cityscapes-20201225_021506.log.json) |
|
||||
| DeepLabV3 | R-50-D8 | 512x1024 | 80000 | - | - | 79.32 | 80.57 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3/deeplabv3_r50-d8_512x1024_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x1024_80k_cityscapes/deeplabv3_r50-d8_512x1024_80k_cityscapes_20200606_113404-b92cfdd4.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x1024_80k_cityscapes/deeplabv3_r50-d8_512x1024_80k_cityscapes_20200606_113404.log.json) |
|
||||
| DeepLabV3 | R-101-D8 | 512x1024 | 80000 | - | - | 80.20 | 81.21 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3/deeplabv3_r101-d8_512x1024_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x1024_80k_cityscapes/deeplabv3_r101-d8_512x1024_80k_cityscapes_20200606_113503-9e428899.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x1024_80k_cityscapes/deeplabv3_r101-d8_512x1024_80k_cityscapes_20200606_113503.log.json) |
|
||||
| DeepLabV3 (FP16) | R-101-D8 | 512x1024 | 80000 | 5.75 | 3.86 | 80.48 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3/deeplabv3_r101-d8_fp16_512x1024_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_fp16_512x1024_80k_cityscapes/deeplabv3_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230920-774d9cec.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_fp16_512x1024_80k_cityscapes/deeplabv3_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230920.log.json) |
|
||||
| DeepLabV3 | R-18-D8 | 769x769 | 80000 | 1.9 | 5.55 | 76.60 | 78.26 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3/deeplabv3_r18-d8_769x769_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18-d8_769x769_80k_cityscapes/deeplabv3_r18-d8_769x769_80k_cityscapes_20201225_021506-6452126a.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18-d8_769x769_80k_cityscapes/deeplabv3_r18-d8_769x769_80k_cityscapes-20201225_021506.log.json) |
|
||||
| DeepLabV3 | R-50-D8 | 769x769 | 80000 | - | - | 79.89 | 81.06 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3/deeplabv3_r50-d8_769x769_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_769x769_80k_cityscapes/deeplabv3_r50-d8_769x769_80k_cityscapes_20200606_221338-788d6228.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_769x769_80k_cityscapes/deeplabv3_r50-d8_769x769_80k_cityscapes_20200606_221338.log.json) |
|
||||
| DeepLabV3 | R-101-D8 | 769x769 | 80000 | - | - | 79.67 | 80.81 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3/deeplabv3_r101-d8_769x769_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_769x769_80k_cityscapes/deeplabv3_r101-d8_769x769_80k_cityscapes_20200607_013353-60e95418.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_769x769_80k_cityscapes/deeplabv3_r101-d8_769x769_80k_cityscapes_20200607_013353.log.json) |
|
||||
@ -102,3 +103,7 @@
|
||||
| DeepLabV3 | R-101-D8 | 512x512 | 160000 | - | - | 41.82 | 42.49 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3_r101-d8_512x512_4x4_160k_coco-stuff164k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_160k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_160k_coco-stuff164k_20210709_155402-f035acfd.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_160k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_160k_coco-stuff164k_20210709_155402.log.json) |
|
||||
| DeepLabV3 | R-50-D8 | 512x512 | 320000 | - | - | 41.37 | 42.22 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3_r50-d8_512x512_4x4_320k_coco-stuff164k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_320k_coco-stuff164k/deeplabv3_r50-d8_512x512_4x4_320k_coco-stuff164k_20210709_155403-51b21115.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_320k_coco-stuff164k/deeplabv3_r50-d8_512x512_4x4_320k_coco-stuff164k_20210709_155403.log.json) |
|
||||
| DeepLabV3 | R-101-D8 | 512x512 | 320000 | - | - | 42.61 | 43.42 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3_r101-d8_512x512_4x4_320k_coco-stuff164k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_320k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_320k_coco-stuff164k_20210709_155402-3cbca14d.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_320k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_320k_coco-stuff164k_20210709_155402.log.json) |
|
||||
|
||||
Note:
|
||||
|
||||
- `FP16` means Mixed Precision (FP16) is adopted in training.
|
||||
|
@ -157,6 +157,27 @@ Models:
|
||||
mIoU(ms+flip): 81.21
|
||||
Config: configs/deeplabv3/deeplabv3_r101-d8_512x1024_80k_cityscapes.py
|
||||
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x1024_80k_cityscapes/deeplabv3_r101-d8_512x1024_80k_cityscapes_20200606_113503-9e428899.pth
|
||||
- Name: deeplabv3_r101-d8_fp16_512x1024_80k_cityscapes
|
||||
In Collection: deeplabv3
|
||||
Metadata:
|
||||
backbone: R-101-D8
|
||||
crop size: (512,1024)
|
||||
lr schd: 80000
|
||||
inference time (ms/im):
|
||||
- value: 259.07
|
||||
hardware: V100
|
||||
backend: PyTorch
|
||||
batch size: 1
|
||||
mode: FP16
|
||||
resolution: (512,1024)
|
||||
memory (GB): 5.75
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
Metrics:
|
||||
mIoU: 80.48
|
||||
Config: configs/deeplabv3/deeplabv3_r101-d8_fp16_512x1024_80k_cityscapes.py
|
||||
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_fp16_512x1024_80k_cityscapes/deeplabv3_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230920-774d9cec.pth
|
||||
- Name: deeplabv3_r18-d8_769x769_80k_cityscapes
|
||||
In Collection: deeplabv3
|
||||
Metadata:
|
||||
|
@ -1,4 +1,4 @@
|
||||
_base_ = '../pspnet/pspnet_r101-d8_512x1024_80k_cityscapes.py'
|
||||
_base_ = './deeplabv3_r101-d8_512x1024_80k_cityscapes.py'
|
||||
# fp16 settings
|
||||
optimizer_config = dict(type='Fp16OptimizerHook', loss_scale=512.)
|
||||
# fp16 placeholder
|
@ -40,6 +40,7 @@
|
||||
| DeepLabV3+ | R-18-D8 | 512x1024 | 80000 | 2.2 | 14.27 | 76.89 | 78.76 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3plus/deeplabv3plus_r18-d8_512x1024_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x1024_80k_cityscapes/deeplabv3plus_r18-d8_512x1024_80k_cityscapes_20201226_080942-cff257fe.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x1024_80k_cityscapes/deeplabv3plus_r18-d8_512x1024_80k_cityscapes-20201226_080942.log.json) |
|
||||
| DeepLabV3+ | R-50-D8 | 512x1024 | 80000 | - | - | 80.09 | 81.13 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_80k_cityscapes/deeplabv3plus_r50-d8_512x1024_80k_cityscapes_20200606_114049-f9fb496d.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_80k_cityscapes/deeplabv3plus_r50-d8_512x1024_80k_cityscapes_20200606_114049.log.json) |
|
||||
| DeepLabV3+ | R-101-D8 | 512x1024 | 80000 | - | - | 80.97 | 82.03 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_cityscapes/deeplabv3plus_r101-d8_512x1024_80k_cityscapes_20200606_114143-068fcfe9.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_cityscapes/deeplabv3plus_r101-d8_512x1024_80k_cityscapes_20200606_114143.log.json) |
|
||||
| DeepLabV3+ (FP16)| R-101-D8 | 512x1024 | 80000 | 6.35 | 7.87 | 80.46 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3plus/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230920-f1104f4b.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230920.log.json) |
|
||||
| DeepLabV3+ | R-18-D8 | 769x769 | 80000 | 2.5 | 5.74 | 76.26 | 77.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3plus/deeplabv3plus_r18-d8_769x769_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_769x769_80k_cityscapes/deeplabv3plus_r18-d8_769x769_80k_cityscapes_20201226_083346-f326e06a.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_769x769_80k_cityscapes/deeplabv3plus_r18-d8_769x769_80k_cityscapes-20201226_083346.log.json) |
|
||||
| DeepLabV3+ | R-50-D8 | 769x769 | 80000 | - | - | 79.83 | 81.48 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3plus/deeplabv3plus_r50-d8_769x769_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_769x769_80k_cityscapes/deeplabv3plus_r50-d8_769x769_80k_cityscapes_20200606_210233-0e9dfdc4.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_769x769_80k_cityscapes/deeplabv3plus_r50-d8_769x769_80k_cityscapes_20200606_210233.log.json) |
|
||||
| DeepLabV3+ | R-101-D8 | 769x769 | 80000 | - | - | 80.98 | 82.18 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3plus/deeplabv3plus_r101-d8_769x769_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_769x769_80k_cityscapes/deeplabv3plus_r101-d8_769x769_80k_cityscapes_20200607_000405-a7573d20.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_769x769_80k_cityscapes/deeplabv3plus_r101-d8_769x769_80k_cityscapes_20200607_000405.log.json) |
|
||||
@ -83,3 +84,7 @@
|
||||
| ---------- | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| DeepLabV3+ | R-101-D8 | 480x480 | 40000 | - | - | 52.86 | 54.54 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59_20210416_111233-ed937f15.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59-20210416_111233.log.json) |
|
||||
| DeepLabV3+ | R-101-D8 | 480x480 | 80000 | - | - | 53.2 | 54.67 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59_20210416_111127-7ca0331d.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59-20210416_111127.log.json) |
|
||||
|
||||
Note:
|
||||
|
||||
- `FP16` means Mixed Precision (FP16) is adopted in training.
|
||||
|
@ -152,6 +152,27 @@ Models:
|
||||
mIoU(ms+flip): 82.03
|
||||
Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_cityscapes.py
|
||||
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_cityscapes/deeplabv3plus_r101-d8_512x1024_80k_cityscapes_20200606_114143-068fcfe9.pth
|
||||
- Name: deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes
|
||||
In Collection: deeplabv3plus
|
||||
Metadata:
|
||||
backbone: R-101-D8
|
||||
crop size: (512,1024)
|
||||
lr schd: 80000
|
||||
inference time (ms/im):
|
||||
- value: 127.06
|
||||
hardware: V100
|
||||
backend: PyTorch
|
||||
batch size: 1
|
||||
mode: FP16
|
||||
resolution: (512,1024)
|
||||
memory (GB): 6.35
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
Metrics:
|
||||
mIoU: 80.46
|
||||
Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes.py
|
||||
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230920-f1104f4b.pth
|
||||
- Name: deeplabv3plus_r18-d8_769x769_80k_cityscapes
|
||||
In Collection: deeplabv3plus
|
||||
Metadata:
|
||||
|
@ -1,4 +1,4 @@
|
||||
_base_ = '../deeplabv3/deeplabv3_r101-d8_512x1024_80k_cityscapes.py'
|
||||
_base_ = './deeplabv3plus_r101-d8_512x1024_80k_cityscapes.py'
|
||||
# fp16 settings
|
||||
optimizer_config = dict(type='Fp16OptimizerHook', loss_scale=512.)
|
||||
# fp16 placeholder
|
@ -39,6 +39,7 @@
|
||||
| FCN | R-18-D8 | 512x1024 | 80000 | 1.7 | 14.65 | 71.11 | 72.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fcn/fcn_r18-d8_512x1024_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18-d8_512x1024_80k_cityscapes/fcn_r18-d8_512x1024_80k_cityscapes_20201225_021327-6c50f8b4.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18-d8_512x1024_80k_cityscapes/fcn_r18-d8_512x1024_80k_cityscapes-20201225_021327.log.json) |
|
||||
| FCN | R-50-D8 | 512x1024 | 80000 | - | | 73.61 | 74.24 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fcn/fcn_r50-d8_512x1024_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x1024_80k_cityscapes/fcn_r50-d8_512x1024_80k_cityscapes_20200606_113019-03aa804d.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x1024_80k_cityscapes/fcn_r50-d8_512x1024_80k_cityscapes_20200606_113019.log.json) |
|
||||
| FCN | R-101-D8 | 512x1024 | 80000 | - | - | 75.13 | 75.94 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fcn/fcn_r101-d8_512x1024_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x1024_80k_cityscapes/fcn_r101-d8_512x1024_80k_cityscapes_20200606_113038-3fb937eb.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x1024_80k_cityscapes/fcn_r101-d8_512x1024_80k_cityscapes_20200606_113038.log.json) |
|
||||
| FCN (FP16)| R-101-D8 | 512x1024 | 80000 | 5.37 | 8.64 | 76.80 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fcn/fcn_r101-d8_fp16_512x1024_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_fp16_512x1024_80k_cityscapes/fcn_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230921-fb13e883.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_fp16_512x1024_80k_cityscapes/fcn_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230921.log.json) |
|
||||
| FCN | R-18-D8 | 769x769 | 80000 | 1.9 | 6.40 | 70.80 | 73.16 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fcn/fcn_r18-d8_769x769_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18-d8_769x769_80k_cityscapes/fcn_r18-d8_769x769_80k_cityscapes_20201225_021451-9739d1b8.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18-d8_769x769_80k_cityscapes/fcn_r18-d8_769x769_80k_cityscapes-20201225_021451.log.json) |
|
||||
| FCN | R-50-D8 | 769x769 | 80000 | - | - | 72.64 | 73.32 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fcn/fcn_r50-d8_769x769_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_769x769_80k_cityscapes/fcn_r50-d8_769x769_80k_cityscapes_20200606_195749-f5caeabc.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_769x769_80k_cityscapes/fcn_r50-d8_769x769_80k_cityscapes_20200606_195749.log.json) |
|
||||
| FCN | R-101-D8 | 769x769 | 80000 | - | - | 75.52 | 76.61 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fcn/fcn_r101-d8_769x769_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_769x769_80k_cityscapes/fcn_r101-d8_769x769_80k_cityscapes_20200606_214354-45cbac68.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_769x769_80k_cityscapes/fcn_r101-d8_769x769_80k_cityscapes_20200606_214354.log.json) |
|
||||
@ -92,3 +93,7 @@
|
||||
| ------ | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| FCN | R-101-D8 | 480x480 | 40000 | - | - | 48.42 | 50.4 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fcn/fcn_r101-d8_480x480_40k_pascal_context_59.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_40k_pascal_context_59/fcn_r101-d8_480x480_40k_pascal_context_59_20210415_230724-8cf83682.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_40k_pascal_context_59/fcn_r101-d8_480x480_40k_pascal_context_59-20210415_230724.log.json) |
|
||||
| FCN | R-101-D8 | 480x480 | 80000 | - | - | 49.35 | 51.38 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fcn/fcn_r101-d8_480x480_80k_pascal_context_59.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_80k_pascal_context_59/fcn_r101-d8_480x480_80k_pascal_context_59_20210416_110804-9a6f2c94.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_80k_pascal_context_59/fcn_r101-d8_480x480_80k_pascal_context_59-20210416_110804.log.json) |
|
||||
|
||||
Note:
|
||||
|
||||
- `FP16` means Mixed Precision (FP16) is adopted in training.
|
||||
|
@ -155,6 +155,27 @@ Models:
|
||||
mIoU(ms+flip): 75.94
|
||||
Config: configs/fcn/fcn_r101-d8_512x1024_80k_cityscapes.py
|
||||
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x1024_80k_cityscapes/fcn_r101-d8_512x1024_80k_cityscapes_20200606_113038-3fb937eb.pth
|
||||
- Name: fcn_r101-d8_fp16_512x1024_80k_cityscapes
|
||||
In Collection: fcn
|
||||
Metadata:
|
||||
backbone: R-101-D8
|
||||
crop size: (512,1024)
|
||||
lr schd: 80000
|
||||
inference time (ms/im):
|
||||
- value: 115.74
|
||||
hardware: V100
|
||||
backend: PyTorch
|
||||
batch size: 1
|
||||
mode: FP16
|
||||
resolution: (512,1024)
|
||||
memory (GB): 5.37
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
Metrics:
|
||||
mIoU: 76.8
|
||||
Config: configs/fcn/fcn_r101-d8_fp16_512x1024_80k_cityscapes.py
|
||||
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_fp16_512x1024_80k_cityscapes/fcn_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230921-fb13e883.pth
|
||||
- Name: fcn_r18-d8_769x769_80k_cityscapes
|
||||
In Collection: fcn
|
||||
Metadata:
|
||||
|
@ -1,4 +1,4 @@
|
||||
_base_ = '../fcn/fcn_r101-d8_512x1024_80k_cityscapes.py'
|
||||
_base_ = './fcn_r101-d8_512x1024_80k_cityscapes.py'
|
||||
# fp16 settings
|
||||
optimizer_config = dict(type='Fp16OptimizerHook', loss_scale=512.)
|
||||
# fp16 placeholder
|
@ -1,34 +0,0 @@
|
||||
# Mixed Precision Training
|
||||
|
||||
## Introduction
|
||||
|
||||
<!-- [OTHERS] -->
|
||||
|
||||
<a href="https://github.com/baidu-research/DeepBench">Official Repo</a>
|
||||
|
||||
<a href="https://github.com/open-mmlab/mmcv/blob/v1.3.14/mmcv/runner/hooks/optimizer.py#L134">Code Snippet</a>
|
||||
|
||||
<details>
|
||||
<summary align="right"><a href="https://arxiv.org/abs/1710.03740">Mixed Precision (FP16) Training (ArXiv'2017)</a></summary>
|
||||
|
||||
```latex
|
||||
@article{micikevicius2017mixed,
|
||||
title={Mixed precision training},
|
||||
author={Micikevicius, Paulius and Narang, Sharan and Alben, Jonah and Diamos, Gregory and Elsen, Erich and Garcia, David and Ginsburg, Boris and Houston, Michael and Kuchaiev, Oleksii and Venkatesh, Ganesh and others},
|
||||
journal={arXiv preprint arXiv:1710.03740},
|
||||
year={2017}
|
||||
}
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
## Results and models
|
||||
|
||||
### Cityscapes
|
||||
|
||||
| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download |
|
||||
| ---------- | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| FCN | R-101-D8 | 512x1024 | 80000 | 5.37 | 8.64 | 76.80 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fp16/fcn_r101-d8_512x1024_80k_fp16_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fp16/fcn_r101-d8_512x1024_80k_fp16_cityscapes/fcn_r101-d8_512x1024_80k_fp16_cityscapes_20200717_230921-50245227.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fp16/fcn_r101-d8_512x1024_80k_fp16_cityscapes/fcn_r101-d8_512x1024_80k_fp16_cityscapes_20200717_230921.log.json) |
|
||||
| PSPNet | R-101-D8 | 512x1024 | 80000 | 5.34 | 8.77 | 79.46 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fp16/pspnet_r101-d8_512x1024_80k_fp16_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fp16/pspnet_r101-d8_512x1024_80k_fp16_cityscapes/pspnet_r101-d8_512x1024_80k_fp16_cityscapes_20200717_230919-ade37931.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fp16/pspnet_r101-d8_512x1024_80k_fp16_cityscapes/pspnet_r101-d8_512x1024_80k_fp16_cityscapes_20200717_230919.log.json) |
|
||||
| DeepLabV3 | R-101-D8 | 512x1024 | 80000 | 5.75 | 3.86 | 80.48 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fp16/deeplabv3_r101-d8_512x1024_80k_fp16_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fp16/deeplabv3_r101-d8_512x1024_80k_fp16_cityscapes/deeplabv3_r101-d8_512x1024_80k_fp16_cityscapes_20200717_230920-bc86dc84.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fp16/deeplabv3_r101-d8_512x1024_80k_fp16_cityscapes/deeplabv3_r101-d8_512x1024_80k_fp16_cityscapes_20200717_230920.log.json) |
|
||||
| DeepLabV3+ | R-101-D8 | 512x1024 | 80000 | 6.35 | 7.87 | 80.46 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fp16/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fp16/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes_20200717_230920-cc58bc8d.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fp16/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes_20200717_230920.log.json) |
|
@ -1,99 +0,0 @@
|
||||
Collections:
|
||||
- Name: fp16
|
||||
Metadata:
|
||||
Training Data:
|
||||
- Cityscapes
|
||||
Paper:
|
||||
URL: https://arxiv.org/abs/1710.03740
|
||||
Title: Mixed Precision Training
|
||||
README: configs/fp16/README.md
|
||||
Code:
|
||||
URL: https://github.com/open-mmlab/mmcv/blob/v1.3.14/mmcv/runner/hooks/optimizer.py#L134
|
||||
Version: v1.3.14
|
||||
Converted From:
|
||||
Code: https://github.com/baidu-research/DeepBench
|
||||
Models:
|
||||
- Name: fcn_r101-d8_512x1024_80k_fp16_cityscapes
|
||||
In Collection: fp16
|
||||
Metadata:
|
||||
backbone: R-101-D8
|
||||
crop size: (512,1024)
|
||||
lr schd: 80000
|
||||
inference time (ms/im):
|
||||
- value: 115.74
|
||||
hardware: V100
|
||||
backend: PyTorch
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 5.37
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
Metrics:
|
||||
mIoU: 76.8
|
||||
Config: configs/fp16/fcn_r101-d8_512x1024_80k_fp16_cityscapes.py
|
||||
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fp16/fcn_r101-d8_512x1024_80k_fp16_cityscapes/fcn_r101-d8_512x1024_80k_fp16_cityscapes_20200717_230921-50245227.pth
|
||||
- Name: pspnet_r101-d8_512x1024_80k_fp16_cityscapes
|
||||
In Collection: fp16
|
||||
Metadata:
|
||||
backbone: R-101-D8
|
||||
crop size: (512,1024)
|
||||
lr schd: 80000
|
||||
inference time (ms/im):
|
||||
- value: 114.03
|
||||
hardware: V100
|
||||
backend: PyTorch
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 5.34
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
Metrics:
|
||||
mIoU: 79.46
|
||||
Config: configs/fp16/pspnet_r101-d8_512x1024_80k_fp16_cityscapes.py
|
||||
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fp16/pspnet_r101-d8_512x1024_80k_fp16_cityscapes/pspnet_r101-d8_512x1024_80k_fp16_cityscapes_20200717_230919-ade37931.pth
|
||||
- Name: deeplabv3_r101-d8_512x1024_80k_fp16_cityscapes
|
||||
In Collection: fp16
|
||||
Metadata:
|
||||
backbone: R-101-D8
|
||||
crop size: (512,1024)
|
||||
lr schd: 80000
|
||||
inference time (ms/im):
|
||||
- value: 259.07
|
||||
hardware: V100
|
||||
backend: PyTorch
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 5.75
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
Metrics:
|
||||
mIoU: 80.48
|
||||
Config: configs/fp16/deeplabv3_r101-d8_512x1024_80k_fp16_cityscapes.py
|
||||
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fp16/deeplabv3_r101-d8_512x1024_80k_fp16_cityscapes/deeplabv3_r101-d8_512x1024_80k_fp16_cityscapes_20200717_230920-bc86dc84.pth
|
||||
- Name: deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes
|
||||
In Collection: fp16
|
||||
Metadata:
|
||||
backbone: R-101-D8
|
||||
crop size: (512,1024)
|
||||
lr schd: 80000
|
||||
inference time (ms/im):
|
||||
- value: 127.06
|
||||
hardware: V100
|
||||
backend: PyTorch
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 6.35
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
Metrics:
|
||||
mIoU: 80.46
|
||||
Config: configs/fp16/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes.py
|
||||
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fp16/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes_20200717_230920-cc58bc8d.pth
|
@ -35,6 +35,7 @@
|
||||
| PSPNet | R-18-D8 | 512x1024 | 80000 | 1.7 | 15.71 | 74.87 | 76.04 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/pspnet/pspnet_r18-d8_512x1024_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_512x1024_80k_cityscapes/pspnet_r18-d8_512x1024_80k_cityscapes_20201225_021458-09ffa746.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_512x1024_80k_cityscapes/pspnet_r18-d8_512x1024_80k_cityscapes-20201225_021458.log.json) |
|
||||
| PSPNet | R-50-D8 | 512x1024 | 80000 | - | - | 78.55 | 79.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes/pspnet_r50-d8_512x1024_80k_cityscapes_20200606_112131-2376f12b.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes/pspnet_r50-d8_512x1024_80k_cityscapes_20200606_112131.log.json) |
|
||||
| PSPNet | R-101-D8 | 512x1024 | 80000 | - | - | 79.76 | 81.01 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/pspnet/pspnet_r101-d8_512x1024_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_80k_cityscapes/pspnet_r101-d8_512x1024_80k_cityscapes_20200606_112211-e1e1100f.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_80k_cityscapes/pspnet_r101-d8_512x1024_80k_cityscapes_20200606_112211.log.json) |
|
||||
| PSPNet (FP16) | R-101-D8 | 512x1024 | 80000 | 5.34 | 8.77 | 79.46 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/pspnet/pspnet_r101-d8_fp16_512x1024_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_fp16_512x1024_80k_cityscapes/pspnet_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230919-a0875e5c.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_fp16_512x1024_80k_cityscapes/pspnet_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230919.log.json) |
|
||||
| PSPNet | R-18-D8 | 769x769 | 80000 | 1.9 | 6.20 | 75.90 | 77.86 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/pspnet/pspnet_r18-d8_769x769_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_769x769_80k_cityscapes/pspnet_r18-d8_769x769_80k_cityscapes_20201225_021458-3deefc62.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_769x769_80k_cityscapes/pspnet_r18-d8_769x769_80k_cityscapes-20201225_021458.log.json) |
|
||||
| PSPNet | R-50-D8 | 769x769 | 80000 | - | - | 79.59 | 80.69 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/pspnet/pspnet_r50-d8_769x769_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_769x769_80k_cityscapes/pspnet_r50-d8_769x769_80k_cityscapes_20200606_210121-5ccf03dd.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_769x769_80k_cityscapes/pspnet_r50-d8_769x769_80k_cityscapes_20200606_210121.log.json) |
|
||||
| PSPNet | R-101-D8 | 769x769 | 80000 | - | - | 79.77 | 81.06 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/pspnet/pspnet_r101-d8_769x769_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_769x769_80k_cityscapes/pspnet_r101-d8_769x769_80k_cityscapes_20200606_225055-dba412fa.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_769x769_80k_cityscapes/pspnet_r101-d8_769x769_80k_cityscapes_20200606_225055.log.json) |
|
||||
@ -112,3 +113,7 @@ We support evaluation results on these two datasets using models above trained o
|
||||
| PSPNet | R-101-D8 | 512x512 | 160000 | - | - | 41.28 | 41.66 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/pspnet_r101-d8_512x512_4x4_160k_coco-stuff164k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_160k_coco-stuff164k/pspnet_r101-d8_512x512_4x4_160k_coco-stuff164k_20210707_152004-4af9621b.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_160k_coco-stuff164k/pspnet_r101-d8_512x512_4x4_160k_coco-stuff164k_20210707_152004.log.json) |
|
||||
| PSPNet | R-50-D8 | 512x512 | 320000 | - | - | 40.53 | 40.75 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/pspnet_r50-d8_512x512_4x4_320k_coco-stuff164k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_320k_coco-stuff164k/pspnet_r50-d8_512x512_4x4_320k_coco-stuff164k_20210707_152004-be9610cc.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_320k_coco-stuff164k/pspnet_r50-d8_512x512_4x4_320k_coco-stuff164k_20210707_152004.log.json) |
|
||||
| PSPNet | R-101-D8 | 512x512 | 320000 | - | - | 41.95 | 42.42 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/pspnet_r101-d8_512x512_4x4_320k_coco-stuff164k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_320k_coco-stuff164k/pspnet_r101-d8_512x512_4x4_320k_coco-stuff164k_20210707_152004-72220c60.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_320k_coco-stuff164k/pspnet_r101-d8_512x512_4x4_320k_coco-stuff164k_20210707_152004.log.json) |
|
||||
|
||||
Note:
|
||||
|
||||
- `FP16` means Mixed Precision (FP16) is adopted in training.
|
||||
|
@ -158,6 +158,27 @@ Models:
|
||||
mIoU(ms+flip): 81.01
|
||||
Config: configs/pspnet/pspnet_r101-d8_512x1024_80k_cityscapes.py
|
||||
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_80k_cityscapes/pspnet_r101-d8_512x1024_80k_cityscapes_20200606_112211-e1e1100f.pth
|
||||
- Name: pspnet_r101-d8_fp16_512x1024_80k_cityscapes
|
||||
In Collection: pspnet
|
||||
Metadata:
|
||||
backbone: R-101-D8
|
||||
crop size: (512,1024)
|
||||
lr schd: 80000
|
||||
inference time (ms/im):
|
||||
- value: 114.03
|
||||
hardware: V100
|
||||
backend: PyTorch
|
||||
batch size: 1
|
||||
mode: FP16
|
||||
resolution: (512,1024)
|
||||
memory (GB): 5.34
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
Metrics:
|
||||
mIoU: 79.46
|
||||
Config: configs/pspnet/pspnet_r101-d8_fp16_512x1024_80k_cityscapes.py
|
||||
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_fp16_512x1024_80k_cityscapes/pspnet_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230919-a0875e5c.pth
|
||||
- Name: pspnet_r18-d8_769x769_80k_cityscapes
|
||||
In Collection: pspnet
|
||||
Metadata:
|
||||
|
@ -1,4 +1,4 @@
|
||||
_base_ = '../deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_cityscapes.py'
|
||||
_base_ = './pspnet_r101-d8_512x1024_80k_cityscapes.py'
|
||||
# fp16 settings
|
||||
optimizer_config = dict(type='Fp16OptimizerHook', loss_scale=512.)
|
||||
# fp16 placeholder
|
@ -129,7 +129,7 @@ Please refer to [CGNet](https://github.com/open-mmlab/mmsegmentation/blob/master
|
||||
|
||||
### Mixed Precision (FP16) Training
|
||||
|
||||
Please refer [Mixed Precision (FP16) Training](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fp16) for details.
|
||||
Please refer [Mixed Precision (FP16) Training] on BiSeNetV2 (https://github.com/open-mmlab/mmsegmentation/blob/master/configs/bisenetv2/bisenetv2_fcn_fp16_4x4_1024x1024_160k_cityscapes.py) for details.
|
||||
|
||||
### U-Net
|
||||
|
||||
|
@ -119,7 +119,7 @@
|
||||
|
||||
### Mixed Precision (FP16) Training
|
||||
|
||||
Please refer [Mixed Precision (FP16) Training](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fp16/README.md) for details.
|
||||
请参考 [Mixed Precision (FP16) Training] 在 BiSeNetV2 训练的样例 (https://github.com/open-mmlab/mmsegmentation/blob/master/configs/bisenetv2/bisenetv2_fcn_fp16_4x4_1024x1024_160k_cityscapes.py) for details.
|
||||
|
||||
## 速度标定
|
||||
|
||||
|
@ -16,7 +16,6 @@ Import:
|
||||
- configs/fastfcn/fastfcn.yml
|
||||
- configs/fastscnn/fastscnn.yml
|
||||
- configs/fcn/fcn.yml
|
||||
- configs/fp16/fp16.yml
|
||||
- configs/gcnet/gcnet.yml
|
||||
- configs/hrnet/hrnet.yml
|
||||
- configs/icnet/icnet.yml
|
||||
|
Loading…
x
Reference in New Issue
Block a user