mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
Upgrade pre commit hooks master (#2155)
* Upgrade pre commit hooks * Upgrade pre commit hooks * mim install mmcv-full * install mim * install mmcv-full * test mmcv-full 1.6.0 * fix timm * fix timm * fix timm
This commit is contained in:
parent
9d2312b4ac
commit
0391dcd105
12
.github/workflows/build.yml
vendored
12
.github/workflows/build.yml
vendored
@ -70,13 +70,14 @@ jobs:
|
||||
coverage run --branch --source mmseg -m pytest tests/
|
||||
coverage xml
|
||||
coverage report -m
|
||||
if: ${{matrix.torch >= '1.5.0'}}
|
||||
# timm from v0.6.11 requires torch>=1.7
|
||||
if: ${{matrix.torch >= '1.7.0'}}
|
||||
- name: Skip timm unittests and generate coverage report
|
||||
run: |
|
||||
coverage run --branch --source mmseg -m pytest tests/ --ignore tests/test_models/test_backbones/test_timm_backbone.py
|
||||
coverage xml
|
||||
coverage report -m
|
||||
if: ${{matrix.torch < '1.5.0'}}
|
||||
if: ${{matrix.torch < '1.7.0'}}
|
||||
|
||||
build_cuda101:
|
||||
runs-on: ubuntu-18.04
|
||||
@ -144,13 +145,14 @@ jobs:
|
||||
coverage run --branch --source mmseg -m pytest tests/
|
||||
coverage xml
|
||||
coverage report -m
|
||||
if: ${{matrix.torch >= '1.5.0'}}
|
||||
# timm from v0.6.11 requires torch>=1.7
|
||||
if: ${{matrix.torch >= '1.7.0'}}
|
||||
- name: Skip timm unittests and generate coverage report
|
||||
run: |
|
||||
coverage run --branch --source mmseg -m pytest tests/ --ignore tests/test_models/test_backbones/test_timm_backbone.py
|
||||
coverage xml
|
||||
coverage report -m
|
||||
if: ${{matrix.torch < '1.5.0'}}
|
||||
if: ${{matrix.torch < '1.7.0'}}
|
||||
- name: Upload coverage to Codecov
|
||||
uses: codecov/codecov-action@v1.0.10
|
||||
with:
|
||||
@ -249,7 +251,7 @@ jobs:
|
||||
run: pip install -e .
|
||||
- name: Run unittests
|
||||
run: |
|
||||
python -m pip install timm
|
||||
python -m pip install 'timm<0.6.11'
|
||||
coverage run --branch --source mmseg -m pytest tests/
|
||||
- name: Generate coverage report
|
||||
run: |
|
||||
|
@ -1,6 +1,6 @@
|
||||
repos:
|
||||
- repo: https://gitlab.com/pycqa/flake8.git
|
||||
rev: 3.8.3
|
||||
rev: 5.0.4
|
||||
hooks:
|
||||
- id: flake8
|
||||
- repo: https://github.com/PyCQA/isort
|
||||
@ -8,11 +8,11 @@ repos:
|
||||
hooks:
|
||||
- id: isort
|
||||
- repo: https://github.com/pre-commit/mirrors-yapf
|
||||
rev: v0.30.0
|
||||
rev: v0.32.0
|
||||
hooks:
|
||||
- id: yapf
|
||||
- repo: https://github.com/pre-commit/pre-commit-hooks
|
||||
rev: v3.1.0
|
||||
rev: v4.3.0
|
||||
hooks:
|
||||
- id: trailing-whitespace
|
||||
- id: check-yaml
|
||||
@ -34,7 +34,7 @@ repos:
|
||||
- mdformat_frontmatter
|
||||
- linkify-it-py
|
||||
- repo: https://github.com/codespell-project/codespell
|
||||
rev: v2.1.0
|
||||
rev: v2.2.1
|
||||
hooks:
|
||||
- id: codespell
|
||||
- repo: https://github.com/myint/docformatter
|
||||
|
@ -53,7 +53,7 @@ Briefly, it is a deep supervision trick to improve the accuracy. In the training
|
||||
|
||||
## Why is the log file not created
|
||||
|
||||
In the train script, we call `get_root_logger`at Line 167, and `get_root_logger` in mmseg calls `get_logger` in mmcv, mmcv will return the same logger which has beed initialized in 'mmsegmentation/tools/train.py' with the parameter `log_file`. There is only one logger (initialized with `log_file`) during training.
|
||||
In the train script, we call `get_root_logger`at Line 167, and `get_root_logger` in mmseg calls `get_logger` in mmcv, mmcv will return the same logger which has been initialized in 'mmsegmentation/tools/train.py' with the parameter `log_file`. There is only one logger (initialized with `log_file`) during training.
|
||||
Ref: [https://github.com/open-mmlab/mmcv/blob/21bada32560c7ed7b15b017dc763d862789e29a8/mmcv/utils/logging.py#L9-L16](https://github.com/open-mmlab/mmcv/blob/21bada32560c7ed7b15b017dc763d862789e29a8/mmcv/utils/logging.py#L9-L16)
|
||||
|
||||
If you find the log file not been created, you might check if `mmcv.utils.get_logger` is called elsewhere.
|
||||
|
@ -33,7 +33,7 @@ data = dict(
|
||||
- `train`, `val` and `test`: The [`config`](https://github.com/open-mmlab/mmcv/blob/master/docs/en/understand_mmcv/config.md)s to build dataset instances for model training, validation and testing by
|
||||
using [`build and registry`](https://github.com/open-mmlab/mmcv/blob/master/docs/en/understand_mmcv/registry.md) mechanism.
|
||||
|
||||
- `samples_per_gpu`: How many samples per batch and per gpu to load during model training, and the `batch_size` of training is equal to `samples_per_gpu` times gpu number, e.g. when using 8 gpus for distributed data parallel trainig and `samples_per_gpu=4`, the `batch_size` is `8*4=32`.
|
||||
- `samples_per_gpu`: How many samples per batch and per gpu to load during model training, and the `batch_size` of training is equal to `samples_per_gpu` times gpu number, e.g. when using 8 gpus for distributed data parallel training and `samples_per_gpu=4`, the `batch_size` is `8*4=32`.
|
||||
If you would like to define `batch_size` for testing and validation, please use `test_dataloaser` and
|
||||
`val_dataloader` with mmseg >=0.24.1.
|
||||
|
||||
|
@ -337,7 +337,7 @@ class VisionTransformer(BaseModule):
|
||||
constant_init(m, val=1.0, bias=0.)
|
||||
|
||||
def _pos_embeding(self, patched_img, hw_shape, pos_embed):
|
||||
"""Positiong embeding method.
|
||||
"""Positioning embeding method.
|
||||
|
||||
Resize the pos_embed, if the input image size doesn't match
|
||||
the training size.
|
||||
|
@ -78,7 +78,7 @@ def sigmoid_focal_loss(pred,
|
||||
valid_mask=None,
|
||||
reduction='mean',
|
||||
avg_factor=None):
|
||||
r"""A warpper of cuda version `Focal Loss
|
||||
r"""A wrapper of cuda version `Focal Loss
|
||||
<https://arxiv.org/abs/1708.02002>`_.
|
||||
Args:
|
||||
pred (torch.Tensor): The prediction with shape (N, C), C is the number
|
||||
|
Loading…
x
Reference in New Issue
Block a user