add upsample neck (#512)
* init * upsample v1.0 * fix errors * change to in_channels list * add unittest, docstring, norm/act config and rename Co-authored-by: xiexinch <test767803@foxmail.com>pull/1801/head
parent
7b5c56bc76
commit
07cc26ae5a
|
@ -1,3 +1,4 @@
|
|||
from .fpn import FPN
|
||||
from .multilevel_neck import MultiLevelNeck
|
||||
|
||||
__all__ = ['FPN']
|
||||
__all__ = ['FPN', 'MultiLevelNeck']
|
||||
|
|
|
@ -0,0 +1,70 @@
|
|||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from mmcv.cnn import ConvModule
|
||||
|
||||
from ..builder import NECKS
|
||||
|
||||
|
||||
@NECKS.register_module()
|
||||
class MultiLevelNeck(nn.Module):
|
||||
"""MultiLevelNeck.
|
||||
|
||||
A neck structure connect vit backbone and decoder_heads.
|
||||
Args:
|
||||
in_channels (List[int]): Number of input channels per scale.
|
||||
out_channels (int): Number of output channels (used at each scale).
|
||||
scales (List[int]): Scale factors for each input feature map.
|
||||
norm_cfg (dict): Config dict for normalization layer. Default: None.
|
||||
act_cfg (dict): Config dict for activation layer in ConvModule.
|
||||
Default: None.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
scales=[0.5, 1, 2, 4],
|
||||
norm_cfg=None,
|
||||
act_cfg=None):
|
||||
super(MultiLevelNeck, self).__init__()
|
||||
assert isinstance(in_channels, list)
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.scales = scales
|
||||
self.num_outs = len(scales)
|
||||
self.lateral_convs = nn.ModuleList()
|
||||
self.convs = nn.ModuleList()
|
||||
for in_channel in in_channels:
|
||||
self.lateral_convs.append(
|
||||
ConvModule(
|
||||
in_channel,
|
||||
out_channels,
|
||||
kernel_size=1,
|
||||
norm_cfg=norm_cfg,
|
||||
act_cfg=act_cfg))
|
||||
for _ in range(self.num_outs):
|
||||
self.convs.append(
|
||||
ConvModule(
|
||||
out_channels,
|
||||
out_channels,
|
||||
kernel_size=3,
|
||||
padding=1,
|
||||
stride=1,
|
||||
norm_cfg=norm_cfg,
|
||||
act_cfg=act_cfg))
|
||||
|
||||
def forward(self, inputs):
|
||||
assert len(inputs) == len(self.in_channels)
|
||||
print(inputs[0].shape)
|
||||
inputs = [
|
||||
lateral_conv(inputs[i])
|
||||
for i, lateral_conv in enumerate(self.lateral_convs)
|
||||
]
|
||||
# for len(inputs) not equal to self.num_outs
|
||||
if len(inputs) == 1:
|
||||
inputs = [inputs[0] for _ in range(self.num_outs)]
|
||||
outs = []
|
||||
for i in range(self.num_outs):
|
||||
x_resize = F.interpolate(
|
||||
inputs[i], scale_factor=self.scales[i], mode='bilinear')
|
||||
outs.append(self.convs[i](x_resize))
|
||||
return tuple(outs)
|
|
@ -0,0 +1,28 @@
|
|||
import torch
|
||||
|
||||
from mmseg.models import MultiLevelNeck
|
||||
|
||||
|
||||
def test_multilevel_neck():
|
||||
|
||||
# Test multi feature maps
|
||||
in_channels = [256, 512, 1024, 2048]
|
||||
inputs = [torch.randn(1, c, 14, 14) for i, c in enumerate(in_channels)]
|
||||
|
||||
neck = MultiLevelNeck(in_channels, 256)
|
||||
outputs = neck(inputs)
|
||||
assert outputs[0].shape == torch.Size([1, 256, 7, 7])
|
||||
assert outputs[1].shape == torch.Size([1, 256, 14, 14])
|
||||
assert outputs[2].shape == torch.Size([1, 256, 28, 28])
|
||||
assert outputs[3].shape == torch.Size([1, 256, 56, 56])
|
||||
|
||||
# Test one feature map
|
||||
in_channels = [768]
|
||||
inputs = [torch.randn(1, 768, 14, 14)]
|
||||
|
||||
neck = MultiLevelNeck(in_channels, 256)
|
||||
outputs = neck(inputs)
|
||||
assert outputs[0].shape == torch.Size([1, 256, 7, 7])
|
||||
assert outputs[1].shape == torch.Size([1, 256, 14, 14])
|
||||
assert outputs[2].shape == torch.Size([1, 256, 28, 28])
|
||||
assert outputs[3].shape == torch.Size([1, 256, 56, 56])
|
Loading…
Reference in New Issue