mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
[Fix] fix_torchserver1.1 (#844)
* test_torchserver1.1 * test_torchserver1.2 * update * update mmseg_handler.py * update docs * update torchserver * tranfer torchserver to torchserve * update docs
This commit is contained in:
parent
cff01b36c9
commit
0b11d58773
@ -304,7 +304,7 @@ In order to serve an `MMSegmentation` model with [`TorchServe`](https://pytorch.
|
|||||||
### 1. Convert model from MMSegmentation to TorchServe
|
### 1. Convert model from MMSegmentation to TorchServe
|
||||||
|
|
||||||
```shell
|
```shell
|
||||||
python tools/mmseg2torchserve.py ${CONFIG_FILE} ${CHECKPOINT_FILE} \
|
python tools/torchserve/mmseg2torchserve.py ${CONFIG_FILE} ${CHECKPOINT_FILE} \
|
||||||
--output-folder ${MODEL_STORE} \
|
--output-folder ${MODEL_STORE} \
|
||||||
--model-name ${MODEL_NAME}
|
--model-name ${MODEL_NAME}
|
||||||
```
|
```
|
||||||
@ -359,3 +359,20 @@ plt.show()
|
|||||||
You should see something similar to:
|
You should see something similar to:
|
||||||
|
|
||||||

|

|
||||||
|
|
||||||
|
And you can use `test_torchserve.py` to compare result of torchserve and pytorch, and visualize them.
|
||||||
|
|
||||||
|
```shell
|
||||||
|
python tools/torchserve/test_torchserve.py ${IMAGE_FILE} ${CONFIG_FILE} ${CHECKPOINT_FILE} ${MODEL_NAME}
|
||||||
|
[--inference-addr ${INFERENCE_ADDR}] [--result-image ${RESULT_IMAGE}] [--device ${DEVICE}]
|
||||||
|
```
|
||||||
|
|
||||||
|
Example:
|
||||||
|
|
||||||
|
```shell
|
||||||
|
python tools/torchserve/test_torchserve.py \
|
||||||
|
demo/demo.png \
|
||||||
|
configs/fcn/fcn_r50-d8_512x1024_40k_cityscapes.py \
|
||||||
|
checkpoint/fcn_r50-d8_512x1024_40k_cityscapes_20200604_192608-efe53f0d.pth \
|
||||||
|
fcn
|
||||||
|
```
|
||||||
|
@ -8,6 +8,6 @@ line_length = 79
|
|||||||
multi_line_output = 0
|
multi_line_output = 0
|
||||||
known_standard_library = setuptools
|
known_standard_library = setuptools
|
||||||
known_first_party = mmseg
|
known_first_party = mmseg
|
||||||
known_third_party = PIL,cityscapesscripts,cv2,detail,matplotlib,mmcv,numpy,onnxruntime,packaging,prettytable,pytest,pytorch_sphinx_theme,scipy,seaborn,torch,ts
|
known_third_party = PIL,cityscapesscripts,cv2,detail,matplotlib,mmcv,numpy,onnxruntime,packaging,prettytable,pytest,pytorch_sphinx_theme,requests,scipy,seaborn,torch,ts
|
||||||
no_lines_before = STDLIB,LOCALFOLDER
|
no_lines_before = STDLIB,LOCALFOLDER
|
||||||
default_section = THIRDPARTY
|
default_section = THIRDPARTY
|
||||||
|
@ -1,11 +1,11 @@
|
|||||||
# Copyright (c) OpenMMLab. All rights reserved.
|
# Copyright (c) OpenMMLab. All rights reserved.
|
||||||
import base64
|
import base64
|
||||||
import io
|
|
||||||
import os
|
import os
|
||||||
|
|
||||||
import cv2
|
import cv2
|
||||||
import mmcv
|
import mmcv
|
||||||
import torch
|
import torch
|
||||||
|
from mmcv.cnn.utils.sync_bn import revert_sync_batchnorm
|
||||||
from ts.torch_handler.base_handler import BaseHandler
|
from ts.torch_handler.base_handler import BaseHandler
|
||||||
|
|
||||||
from mmseg.apis import inference_segmentor, init_segmentor
|
from mmseg.apis import inference_segmentor, init_segmentor
|
||||||
@ -27,6 +27,7 @@ class MMsegHandler(BaseHandler):
|
|||||||
self.config_file = os.path.join(model_dir, 'config.py')
|
self.config_file = os.path.join(model_dir, 'config.py')
|
||||||
|
|
||||||
self.model = init_segmentor(self.config_file, checkpoint, self.device)
|
self.model = init_segmentor(self.config_file, checkpoint, self.device)
|
||||||
|
self.model = revert_sync_batchnorm(self.model)
|
||||||
self.initialized = True
|
self.initialized = True
|
||||||
|
|
||||||
def preprocess(self, data):
|
def preprocess(self, data):
|
||||||
@ -47,8 +48,10 @@ class MMsegHandler(BaseHandler):
|
|||||||
|
|
||||||
def postprocess(self, data):
|
def postprocess(self, data):
|
||||||
output = []
|
output = []
|
||||||
|
|
||||||
for image_result in data:
|
for image_result in data:
|
||||||
buffer = io.BytesIO()
|
|
||||||
_, buffer = cv2.imencode('.png', image_result[0].astype('uint8'))
|
_, buffer = cv2.imencode('.png', image_result[0].astype('uint8'))
|
||||||
output.append(buffer.tobytes())
|
bast64_data = base64.b64encode(buffer.tobytes())
|
||||||
|
bast64_str = str(bast64_data, 'utf-8')
|
||||||
|
output.append(bast64_str)
|
||||||
return output
|
return output
|
59
tools/torchserve/test_torchserve.py
Normal file
59
tools/torchserve/test_torchserve.py
Normal file
@ -0,0 +1,59 @@
|
|||||||
|
import base64
|
||||||
|
from argparse import ArgumentParser
|
||||||
|
from io import BytesIO
|
||||||
|
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import mmcv
|
||||||
|
import requests
|
||||||
|
|
||||||
|
from mmseg.apis import inference_segmentor, init_segmentor
|
||||||
|
|
||||||
|
|
||||||
|
def parse_args():
|
||||||
|
parser = ArgumentParser(
|
||||||
|
description='Compare result of torchserve and pytorch,'
|
||||||
|
'and visualize them.')
|
||||||
|
parser.add_argument('img', help='Image file')
|
||||||
|
parser.add_argument('config', help='Config file')
|
||||||
|
parser.add_argument('checkpoint', help='Checkpoint file')
|
||||||
|
parser.add_argument('model_name', help='The model name in the server')
|
||||||
|
parser.add_argument(
|
||||||
|
'--inference-addr',
|
||||||
|
default='127.0.0.1:8080',
|
||||||
|
help='Address and port of the inference server')
|
||||||
|
parser.add_argument(
|
||||||
|
'--result-image',
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help='save server output in result-image')
|
||||||
|
parser.add_argument(
|
||||||
|
'--device', default='cuda:0', help='Device used for inference')
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
return args
|
||||||
|
|
||||||
|
|
||||||
|
def main(args):
|
||||||
|
url = 'http://' + args.inference_addr + '/predictions/' + args.model_name
|
||||||
|
with open(args.img, 'rb') as image:
|
||||||
|
tmp_res = requests.post(url, image)
|
||||||
|
base64_str = tmp_res.content
|
||||||
|
buffer = base64.b64decode(base64_str)
|
||||||
|
if args.result_image:
|
||||||
|
with open(args.result_image, 'wb') as out_image:
|
||||||
|
out_image.write(buffer)
|
||||||
|
plt.imshow(mmcv.imread(args.result_image, 'grayscale'))
|
||||||
|
plt.show()
|
||||||
|
else:
|
||||||
|
plt.imshow(plt.imread(BytesIO(buffer)))
|
||||||
|
plt.show()
|
||||||
|
model = init_segmentor(args.config, args.checkpoint, args.device)
|
||||||
|
image = mmcv.imread(args.img)
|
||||||
|
result = inference_segmentor(model, image)
|
||||||
|
plt.imshow(result[0])
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
args = parse_args()
|
||||||
|
main(args)
|
Loading…
x
Reference in New Issue
Block a user