Onnx upsample (#100)

* add customized Upsample which can convert to ONNX

* support multiply decode head for hrnet

* support size for Upsample
This commit is contained in:
robin Han 2020-09-03 19:59:13 +08:00 committed by GitHub
parent b8f42c70fa
commit 0c04f52c42
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 45 additions and 11 deletions

View File

@ -4,7 +4,7 @@ from mmcv.cnn import (build_conv_layer, build_norm_layer, constant_init,
from mmcv.runner import load_checkpoint
from mmcv.utils.parrots_wrapper import _BatchNorm
from mmseg.ops import resize
from mmseg.ops import Upsample, resize
from mmseg.utils import get_root_logger
from ..builder import BACKBONES
from .resnet import BasicBlock, Bottleneck
@ -141,7 +141,7 @@ class HRModule(nn.Module):
bias=False),
build_norm_layer(self.norm_cfg, in_channels[i])[1],
# we set align_corners=False for HRNet
nn.Upsample(
Upsample(
scale_factor=2**(j - i),
mode='bilinear',
align_corners=False)))

View File

@ -1,5 +1,5 @@
from .encoding import Encoding
from .separable_conv_module import DepthwiseSeparableConvModule
from .wrappers import resize
from .wrappers import Upsample, resize
__all__ = ['resize', 'DepthwiseSeparableConvModule', 'Encoding']
__all__ = ['Upsample', 'resize', 'DepthwiseSeparableConvModule', 'Encoding']

View File

@ -1,5 +1,7 @@
import warnings
import torch
import torch.nn as nn
import torch.nn.functional as F
@ -11,8 +13,8 @@ def resize(input,
warning=True):
if warning:
if size is not None and align_corners:
input_h, input_w = input.shape[2:]
output_h, output_w = size
input_h, input_w = tuple(int(x) for x in input.shape[2:])
output_h, output_w = tuple(int(x) for x in size)
if output_h > input_h or output_w > output_h:
if ((output_h > 1 and output_w > 1 and input_h > 1
and input_w > 1) and (output_h - 1) % (input_h - 1)
@ -22,4 +24,30 @@ def resize(input,
'the output would more aligned if '
f'input size {(input_h, input_w)} is `x+1` and '
f'out size {(output_h, output_w)} is `nx+1`')
if isinstance(size, torch.Size):
size = tuple(int(x) for x in size)
return F.interpolate(input, size, scale_factor, mode, align_corners)
class Upsample(nn.Module):
def __init__(self,
size=None,
scale_factor=None,
mode='nearest',
align_corners=None):
super(Upsample, self).__init__()
self.size = size
if isinstance(scale_factor, tuple):
self.scale_factor = tuple(float(factor) for factor in scale_factor)
else:
self.scale_factor = float(scale_factor) if scale_factor else None
self.mode = mode
self.align_corners = align_corners
def forward(self, x):
if not self.size:
size = [int(t * self.scale_factor) for t in x.shape[-2:]]
else:
size = self.size
return resize(x, size, None, self.mode, self.align_corners)

View File

@ -5,6 +5,7 @@ import mmcv
import numpy as np
import onnxruntime as rt
import torch
from torch import nn
import torch._C
import torch.serialization
from mmcv.onnx import register_extra_symbolics
@ -88,7 +89,10 @@ def pytorch2onnx(model,
"""
model.cpu().eval()
num_classes = model.decode_head.num_classes
if isinstance(model.decode_head, nn.ModuleList):
num_classes = model.decode_head[-1].num_classes
else:
num_classes = model.decode_head.num_classes
mm_inputs = _demo_mm_inputs(input_shape, num_classes)
@ -142,7 +146,7 @@ def pytorch2onnx(model,
def parse_args():
parser = argparse.ArgumentParser(description='Convert MMDet to ONNX')
parser = argparse.ArgumentParser(description='Convert MMSeg to ONNX')
parser.add_argument('config', help='test config file path')
parser.add_argument('--checkpoint', help='checkpoint file', default=None)
parser.add_argument('--show', action='store_true', help='show onnx graph')
@ -182,11 +186,13 @@ if __name__ == '__main__':
# convert SyncBN to BN
segmentor = _convert_batchnorm(segmentor)
num_classes = segmentor.decode_head.num_classes
if isinstance(segmentor.decode_head, nn.ModuleList):
num_classes = segmentor.decode_head[-1].num_classes
else:
num_classes = segmentor.decode_head.num_classes
if args.checkpoint:
checkpoint = load_checkpoint(
segmentor, args.checkpoint, map_location='cpu')
load_checkpoint(segmentor, args.checkpoint, map_location='cpu')
# conver model to onnx file
pytorch2onnx(