[Feature] Support dark dataset test (#815)
* rewrite init function * support dark_zurich test * reset image size * add night * add train_pipeline * init function parameters * remove base dataset config * remove fcn config * update doc * add datasets to README * update doc * fix table of PSPNet config * fix table of PSPNet config * change 'model' tp 'evaluation checkpoint' * fix typos in README_zh-CN Co-authored-by: MengzhangLI <mcmong@pku.edu.cn>pull/1801/head
parent
b5ad23e545
commit
0cf838f294
13
README.md
13
README.md
|
@ -94,6 +94,19 @@ Supported methods:
|
|||
- [x] [SETR (CVPR'2021)](configs/setr)
|
||||
- [x] [SegFormer (ArXiv'2021)](configs/segformer)
|
||||
|
||||
Supported datasets:
|
||||
|
||||
- [x] [Cityscapes](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/dataset_prepare.md#cityscapes)
|
||||
- [x] [PASCAL VOC](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/dataset_prepare.md#pascal-voc)
|
||||
- [x] [ADE20K](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/dataset_prepare.md#ade20k)
|
||||
- [x] [Pascal Context](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/dataset_prepare.md#pascal-context)
|
||||
- [x] [CHASE_DB1](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/dataset_prepare.md#chase-db1)
|
||||
- [x] [DRIVE](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/dataset_prepare.md#drive)
|
||||
- [x] [HRF](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/dataset_prepare.md#hrf)
|
||||
- [x] [STARE](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/dataset_prepare.md#stare)
|
||||
- [x] [Dark Zurich](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/dataset_prepare.md#dark-zurich)
|
||||
- [x] [Nighttime Driving](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/dataset_prepare.md#nighttime-driving)
|
||||
|
||||
## Installation
|
||||
|
||||
Please refer to [get_started.md](docs/get_started.md#installation) for installation and [dataset_prepare.md](docs/dataset_prepare.md#prepare-datasets) for dataset preparation.
|
||||
|
|
|
@ -93,9 +93,22 @@ MMSegmentation 是一个基于 PyTorch 的语义分割开源工具箱。它是 O
|
|||
- [x] [SETR (CVPR'2021)](configs/setr)
|
||||
- [x] [SegFormer (ArXiv'2021)](configs/segformer)
|
||||
|
||||
已支持的数据集:
|
||||
|
||||
- [x] [Cityscapes](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/dataset_prepare.md#cityscapes)
|
||||
- [x] [PASCAL VOC](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/dataset_prepare.md#pascal-voc)
|
||||
- [x] [ADE20K](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/dataset_prepare.md#ade20k)
|
||||
- [x] [Pascal Context](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/dataset_prepare.md#pascal-context)
|
||||
- [x] [CHASE_DB1](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/dataset_prepare.md#chase-db1)
|
||||
- [x] [DRIVE](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/dataset_prepare.md#drive)
|
||||
- [x] [HRF](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/dataset_prepare.md#hrf)
|
||||
- [x] [STARE](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/dataset_prepare.md#stare)
|
||||
- [x] [Dark Zurich](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/dataset_prepare.md#dark-zurich)
|
||||
- [x] [Nighttime Driving](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/dataset_prepare.md#nighttime-driving)
|
||||
|
||||
## 安装
|
||||
|
||||
请参考[快速入门文档](docs_zh-CN/get_started.md#installation)进行安装和数据集准备。
|
||||
请参考[快速入门文档](docs_zh-CN/get_started.md#installation)进行安装,参考[数据集准备](docs_zh-CN/dataset_prepare.md)处理数据。
|
||||
|
||||
## 快速入门
|
||||
|
||||
|
|
|
@ -67,3 +67,19 @@
|
|||
| ------ | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| PSPNet | R-101-D8 | 480x480 | 40000 | - | - | 52.02 | 53.54 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/pspnet/pspnet_r101-d8_480x480_40k_pascal_context_59.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_40k_pascal_context_59/pspnet_r101-d8_480x480_40k_pascal_context_59_20210416_114524-86d44cd4.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_40k_pascal_context_59/pspnet_r101-d8_480x480_40k_pascal_context_59-20210416_114524.log.json) |
|
||||
| PSPNet | R-101-D8 | 480x480 | 80000 | - | - | 52.47 | 53.99 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/pspnet/pspnet_r101-d8_480x480_80k_pascal_context_59.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_80k_pascal_context_59/pspnet_r101-d8_480x480_80k_pascal_context_59_20210416_114418-fa6caaa2.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_80k_pascal_context_59/pspnet_r101-d8_480x480_80k_pascal_context_59-20210416_114418.log.json) |
|
||||
|
||||
### Dark Zurich and Nighttime Driving
|
||||
|
||||
We support evaluation results on these two datasets using models above trained on Cityscapes training set.
|
||||
|
||||
|Method|Backbone |Training Dataset |Test Dataset |mIoU |config| evaluation checkpoint|
|
||||
|------ |------ |------ |----- |-----|-----|-----|
|
||||
|PSPNet|R-50-D8 |Cityscapes Training set |Dark Zurich |10.91|[config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/pspnet/pspnet_r50-d8_512x1024_40k_dark.py)|[model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338.log.json) |
|
||||
|PSPNet|R-50-D8 |Cityscapes Training set |Nighttime Driving|23.02|[config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/pspnet/pspnet_r50-d8_512x1024_40k_night_driving.py)| [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338.log.json) |
|
||||
|PSPNet|R-50-D8 |Cityscapes Training set |Cityscapes Validation set|77.85 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338.log.json) |
|
||||
|PSPNet|R-101-D8 |Cityscapes Training set |Dark Zurich |10.16|[config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/pspnet/pspnet_r101-d8_512x1024_40k_dark.py)| [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_40k_cityscapes/pspnet_r101-d8_512x1024_40k_cityscapes_20200604_232751-467e7cf4.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_40k_cityscapes/pspnet_r101-d8_512x1024_40k_cityscapes_20200604_232751.log.json) |
|
||||
|PSPNet|R-101-D8 |Cityscapes Training set |Nighttime Driving|20.25|[config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/pspnet/pspnet_r101-d8_512x1024_40k_night_driving.py)| [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_40k_cityscapes/pspnet_r101-d8_512x1024_40k_cityscapes_20200604_232751-467e7cf4.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_40k_cityscapes/pspnet_r101-d8_512x1024_40k_cityscapes_20200604_232751.log.json) |
|
||||
|PSPNet|R-101-D8 |Cityscapes Training set |Cityscapes Validation set|78.34|[config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/pspnet/pspnet_r101-d8_512x1024_40k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_40k_cityscapes/pspnet_r101-d8_512x1024_40k_cityscapes_20200604_232751-467e7cf4.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_40k_cityscapes/pspnet_r101-d8_512x1024_40k_cityscapes_20200604_232751.log.json) |
|
||||
|PSPNet|R-101b-D8|Cityscapes Training set |Dark Zurich |15.54|[config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/pspnet/pspnet_r101b-d8_512x1024_80k_dark.py)| [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_512x1024_80k_cityscapes/pspnet_r101b-d8_512x1024_80k_cityscapes_20201226_170012-3a4d38ab.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_512x1024_80k_cityscapes/pspnet_r101b-d8_512x1024_80k_cityscapes-20201226_170012.log.json) |
|
||||
|PSPNet|R-101b-D8|Cityscapes Training set |Nighttime Driving|22.25|[config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/pspnet/pspnet_r101b-d8_512x1024_80k_night_driving.py)| [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_512x1024_80k_cityscapes/pspnet_r101b-d8_512x1024_80k_cityscapes_20201226_170012-3a4d38ab.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_512x1024_80k_cityscapes/pspnet_r101b-d8_512x1024_80k_cityscapes-20201226_170012.log.json) |
|
||||
|PSPNet|R-101b-D8|Cityscapes Training set |Cityscapes Validation set|79.69|[config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/pspnet/pspnet_r101b-d8_512x1024_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_512x1024_80k_cityscapes/pspnet_r101b-d8_512x1024_80k_cityscapes_20201226_170012-3a4d38ab.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_512x1024_80k_cityscapes/pspnet_r101b-d8_512x1024_80k_cityscapes-20201226_170012.log.json) |
|
||||
|
|
|
@ -6,6 +6,7 @@ Collections:
|
|||
- Pascal VOC 2012 + Aug
|
||||
- Pascal Context
|
||||
- Pascal Context 59
|
||||
- Dark Zurich and Nighttime Driving
|
||||
Name: pspnet
|
||||
Models:
|
||||
- Config: configs/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes.py
|
||||
|
|
|
@ -0,0 +1,2 @@
|
|||
_base_ = './pspnet_r50-d8_512x1024_40k_dark.py'
|
||||
model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
|
|
@ -0,0 +1,2 @@
|
|||
_base_ = './pspnet_r50-d8_512x1024_40k_night_driving.py'
|
||||
model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
|
|
@ -0,0 +1,4 @@
|
|||
_base_ = './pspnet_r50-d8_512x1024_80k_dark.py'
|
||||
model = dict(
|
||||
pretrained='torchvision://resnet101',
|
||||
backbone=dict(type='ResNet', depth=101))
|
|
@ -0,0 +1,4 @@
|
|||
_base_ = './pspnet_r50-d8_512x1024_80k_night_driving.py'
|
||||
model = dict(
|
||||
pretrained='torchvision://resnet101',
|
||||
backbone=dict(type='ResNet', depth=101))
|
|
@ -0,0 +1,29 @@
|
|||
_base_ = [
|
||||
'../_base_/models/pspnet_r50-d8.py', '../_base_/datasets/cityscapes.py',
|
||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
|
||||
]
|
||||
img_norm_cfg = dict(
|
||||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
||||
test_pipeline = [
|
||||
dict(type='LoadImageFromFile'),
|
||||
dict(
|
||||
type='MultiScaleFlipAug',
|
||||
img_scale=(1920, 1080),
|
||||
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
|
||||
flip=False,
|
||||
transforms=[
|
||||
dict(type='Resize', keep_ratio=True),
|
||||
dict(type='RandomFlip'),
|
||||
dict(type='Normalize', **img_norm_cfg),
|
||||
dict(type='ImageToTensor', keys=['img']),
|
||||
dict(type='Collect', keys=['img']),
|
||||
])
|
||||
]
|
||||
|
||||
data = dict(
|
||||
test=dict(
|
||||
type='DarkZurichDataset',
|
||||
data_root='data/dark_zurich/',
|
||||
img_dir='rgb_anon/val/night/GOPR0356',
|
||||
ann_dir='gt/val/night/GOPR0356',
|
||||
pipeline=test_pipeline))
|
|
@ -0,0 +1,29 @@
|
|||
_base_ = [
|
||||
'../_base_/models/pspnet_r50-d8.py', '../_base_/datasets/cityscapes.py',
|
||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
|
||||
]
|
||||
|
||||
img_norm_cfg = dict(
|
||||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
||||
test_pipeline = [
|
||||
dict(type='LoadImageFromFile'),
|
||||
dict(
|
||||
type='MultiScaleFlipAug',
|
||||
img_scale=(1920, 1080),
|
||||
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
|
||||
flip=False,
|
||||
transforms=[
|
||||
dict(type='Resize', keep_ratio=True),
|
||||
dict(type='RandomFlip'),
|
||||
dict(type='Normalize', **img_norm_cfg),
|
||||
dict(type='ImageToTensor', keys=['img']),
|
||||
dict(type='Collect', keys=['img']),
|
||||
])
|
||||
]
|
||||
data = dict(
|
||||
test=dict(
|
||||
type='NightDrivingDataset',
|
||||
data_root='data/NighttimeDrivingTest/',
|
||||
img_dir='leftImg8bit/test/night',
|
||||
ann_dir='gtCoarse_daytime_trainvaltest/test/night',
|
||||
pipeline=test_pipeline))
|
|
@ -0,0 +1,30 @@
|
|||
_base_ = [
|
||||
'../_base_/models/pspnet_r50-d8.py', '../_base_/datasets/cityscapes.py',
|
||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
|
||||
]
|
||||
|
||||
img_norm_cfg = dict(
|
||||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
||||
test_pipeline = [
|
||||
dict(type='LoadImageFromFile'),
|
||||
dict(
|
||||
type='MultiScaleFlipAug',
|
||||
img_scale=(1920, 1080),
|
||||
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
|
||||
flip=False,
|
||||
transforms=[
|
||||
dict(type='Resize', keep_ratio=True),
|
||||
dict(type='RandomFlip'),
|
||||
dict(type='Normalize', **img_norm_cfg),
|
||||
dict(type='ImageToTensor', keys=['img']),
|
||||
dict(type='Collect', keys=['img']),
|
||||
])
|
||||
]
|
||||
|
||||
data = dict(
|
||||
test=dict(
|
||||
type='DarkZurichDataset',
|
||||
data_root='data/dark_zurich/',
|
||||
img_dir='rgb_anon/val/night/GOPR0356',
|
||||
ann_dir='gt/val/night/GOPR0356',
|
||||
pipeline=test_pipeline))
|
|
@ -0,0 +1,29 @@
|
|||
_base_ = [
|
||||
'../_base_/models/pspnet_r50-d8.py', '../_base_/datasets/cityscapes.py',
|
||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
|
||||
]
|
||||
|
||||
img_norm_cfg = dict(
|
||||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
||||
test_pipeline = [
|
||||
dict(type='LoadImageFromFile'),
|
||||
dict(
|
||||
type='MultiScaleFlipAug',
|
||||
img_scale=(1920, 1080),
|
||||
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
|
||||
flip=False,
|
||||
transforms=[
|
||||
dict(type='Resize', keep_ratio=True),
|
||||
dict(type='RandomFlip'),
|
||||
dict(type='Normalize', **img_norm_cfg),
|
||||
dict(type='ImageToTensor', keys=['img']),
|
||||
dict(type='Collect', keys=['img']),
|
||||
])
|
||||
]
|
||||
data = dict(
|
||||
test=dict(
|
||||
type='NightDrivingDataset',
|
||||
data_root='data/NighttimeDrivingTest/',
|
||||
img_dir='leftImg8bit/test/night',
|
||||
ann_dir='gtCoarse_daytime_trainvaltest/test/night',
|
||||
pipeline=test_pipeline))
|
|
@ -69,7 +69,27 @@ mmsegmentation
|
|||
│ │ ├── annotations
|
||||
│ │ │ ├── training
|
||||
│ │ │ ├── validation
|
||||
|
||||
| ├── dark_zurich
|
||||
| │ ├── gps
|
||||
| │ │ ├── val
|
||||
| │ │ └── val_ref
|
||||
| │ ├── gt
|
||||
| │ │ └── val
|
||||
| │ ├── LICENSE.txt
|
||||
| │ ├── lists_file_names
|
||||
| │ │ ├── val_filenames.txt
|
||||
| │ │ └── val_ref_filenames.txt
|
||||
| │ ├── README.md
|
||||
| │ └── rgb_anon
|
||||
| │ | ├── val
|
||||
| │ | └── val_ref
|
||||
| ├── NighttimeDrivingTest
|
||||
| | ├── gtCoarse_daytime_trainvaltest
|
||||
| | │ └── test
|
||||
| | │ └── night
|
||||
| | └── leftImg8bit
|
||||
| | | └── test
|
||||
| | | └── night
|
||||
```
|
||||
|
||||
### Cityscapes
|
||||
|
@ -163,3 +183,11 @@ python tools/convert_datasets/stare.py /path/to/stare-images.tar /path/to/labels
|
|||
```
|
||||
|
||||
The script will make directory structure automatically.
|
||||
|
||||
### Dark Zurich
|
||||
|
||||
Since we only support test models on this dataset, you may only download [the validation set](https://data.vision.ee.ethz.ch/csakarid/shared/GCMA_UIoU/Dark_Zurich_val_anon.zip).
|
||||
|
||||
### Nighttime Driving
|
||||
|
||||
Since we only support test models on this dataset, you may only download [the test set](http://data.vision.ee.ethz.ch/daid/NighttimeDriving/NighttimeDrivingTest.zip).
|
||||
|
|
|
@ -68,7 +68,27 @@ mmsegmentation
|
|||
│ │ ├── annotations
|
||||
│ │ │ ├── training
|
||||
│ │ │ ├── validation
|
||||
|
||||
| ├── dark_zurich
|
||||
| │ ├── gps
|
||||
| │ │ ├── val
|
||||
| │ │ └── val_ref
|
||||
| │ ├── gt
|
||||
| │ │ └── val
|
||||
| │ ├── LICENSE.txt
|
||||
| │ ├── lists_file_names
|
||||
| │ │ ├── val_filenames.txt
|
||||
| │ │ └── val_ref_filenames.txt
|
||||
| │ ├── README.md
|
||||
| │ └── rgb_anon
|
||||
| │ | ├── val
|
||||
| │ | └── val_ref
|
||||
| ├── NighttimeDrivingTest
|
||||
| | ├── gtCoarse_daytime_trainvaltest
|
||||
| | │ └── test
|
||||
| | │ └── night
|
||||
| | └── leftImg8bit
|
||||
| | | └── test
|
||||
| | | └── night
|
||||
```
|
||||
|
||||
### Cityscapes
|
||||
|
@ -167,3 +187,11 @@ python tools/convert_datasets/stare.py /path/to/stare-images.tar /path/to/labels
|
|||
```
|
||||
|
||||
这个脚本将自动生成正确的文件夹结构。
|
||||
|
||||
### Dark Zurich
|
||||
|
||||
因为我们只支持在此数据集上测试模型,所以您只需下载[验证集](https://data.vision.ee.ethz.ch/csakarid/shared/GCMA_UIoU/Dark_Zurich_val_anon.zip)。
|
||||
|
||||
### Nighttime Driving
|
||||
|
||||
因为我们只支持在此数据集上测试模型,所以您只需下载[测试集](http://data.vision.ee.ethz.ch/daid/NighttimeDriving/NighttimeDrivingTest.zip)。
|
||||
|
|
|
@ -4,9 +4,11 @@ from .builder import DATASETS, PIPELINES, build_dataloader, build_dataset
|
|||
from .chase_db1 import ChaseDB1Dataset
|
||||
from .cityscapes import CityscapesDataset
|
||||
from .custom import CustomDataset
|
||||
from .dark_zurich import DarkZurichDataset
|
||||
from .dataset_wrappers import ConcatDataset, RepeatDataset
|
||||
from .drive import DRIVEDataset
|
||||
from .hrf import HRFDataset
|
||||
from .night_driving import NightDrivingDataset
|
||||
from .pascal_context import PascalContextDataset, PascalContextDataset59
|
||||
from .stare import STAREDataset
|
||||
from .voc import PascalVOCDataset
|
||||
|
@ -16,5 +18,5 @@ __all__ = [
|
|||
'DATASETS', 'build_dataset', 'PIPELINES', 'CityscapesDataset',
|
||||
'PascalVOCDataset', 'ADE20KDataset', 'PascalContextDataset',
|
||||
'PascalContextDataset59', 'ChaseDB1Dataset', 'DRIVEDataset', 'HRFDataset',
|
||||
'STAREDataset'
|
||||
'STAREDataset', 'DarkZurichDataset', 'NightDrivingDataset'
|
||||
]
|
||||
|
|
|
@ -0,0 +1,13 @@
|
|||
from .builder import DATASETS
|
||||
from .cityscapes import CityscapesDataset
|
||||
|
||||
|
||||
@DATASETS.register_module()
|
||||
class DarkZurichDataset(CityscapesDataset):
|
||||
"""DarkZurichDataset dataset."""
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(
|
||||
img_suffix='_rgb_anon.png',
|
||||
seg_map_suffix='_gt_labelTrainIds.png',
|
||||
**kwargs)
|
|
@ -0,0 +1,13 @@
|
|||
from .builder import DATASETS
|
||||
from .cityscapes import CityscapesDataset
|
||||
|
||||
|
||||
@DATASETS.register_module()
|
||||
class NightDrivingDataset(CityscapesDataset):
|
||||
"""NightDrivingDataset dataset."""
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(
|
||||
img_suffix='_leftImg8bit.png',
|
||||
seg_map_suffix='_gtCoarse_labelTrainIds.png',
|
||||
**kwargs)
|
Loading…
Reference in New Issue