Bump to v0.13 (#529)

pull/1801/head
Jerry Jiarui XU 2021-05-05 16:56:19 -07:00 committed by GitHub
parent 4f2ef8af78
commit 0d477ac577
4 changed files with 47 additions and 3 deletions

View File

@ -48,7 +48,7 @@ This project is released under the [Apache 2.0 license](LICENSE).
## Changelog
v0.12.0 was released in 04/03/2021.
v0.13.0 was released in 05/05/2021.
Please refer to [changelog.md](docs/changelog.md) for details and release history.
## Benchmark and model zoo

View File

@ -1,5 +1,45 @@
## Changelog
### V0.13 (05/05/2021)
**Highlights**
- Support Pascal Context Class-59 dataset.
- Support Visual Transformer Backbone.
- Support mFscore metric.
**Bug Fixes**
- Fixed Colaboratory tutorial ([#451](https://github.com/open-mmlab/mmsegmentation/pull/451))
- Fixed mIoU calculation range ([#471](https://github.com/open-mmlab/mmsegmentation/pull/471))
- Fixed sem_fpn, unet README.md ([#492](https://github.com/open-mmlab/mmsegmentation/pull/492))
- Fixed `num_classes` in FCN for Pascal Context 60-class dataset ([#488](https://github.com/open-mmlab/mmsegmentation/pull/488))
- Fixed FP16 inference ([#497](https://github.com/open-mmlab/mmsegmentation/pull/497))
**New Features**
- Support dynamic export and visualize to pytorch2onnx ([#463](https://github.com/open-mmlab/mmsegmentation/pull/463))
- Support export to torchscript ([#469](https://github.com/open-mmlab/mmsegmentation/pull/469), [#499](https://github.com/open-mmlab/mmsegmentation/pull/499))
- Support Pascal Context Class-59 dataset ([#459](https://github.com/open-mmlab/mmsegmentation/pull/459))
- Support Visual Transformer backbone ([#465](https://github.com/open-mmlab/mmsegmentation/pull/465))
- Support UpSample Neck ([#512](https://github.com/open-mmlab/mmsegmentation/pull/512))
- Support mFscore metric ([#509](https://github.com/open-mmlab/mmsegmentation/pull/509))
**Improvements**
- Add more CI for PyTorch ([#460](https://github.com/open-mmlab/mmsegmentation/pull/460))
- Add print model graph args for tools/print_config.py ([#451](https://github.com/open-mmlab/mmsegmentation/pull/451))
- Add cfg links in modelzoo README.md ([#468](https://github.com/open-mmlab/mmsegmentation/pull/469))
- Add BaseSegmentor import to segmentors/__init__.py ([#495](https://github.com/open-mmlab/mmsegmentation/pull/495))
- Add MMOCR, MMGeneration links ([#501](https://github.com/open-mmlab/mmsegmentation/pull/501), [#506](https://github.com/open-mmlab/mmsegmentation/pull/506))
- Add Chinese QR code ([#506](https://github.com/open-mmlab/mmsegmentation/pull/506))
- Use MMCV MODEL_REGISTRY ([#515](https://github.com/open-mmlab/mmsegmentation/pull/515))
- Add ONNX testing tools ([#498](https://github.com/open-mmlab/mmsegmentation/pull/498))
- Replace data_dict calling 'img' key to support MMDet3D ([#514](https://github.com/open-mmlab/mmsegmentation/pull/514))
- Support reading class_weight from file in loss function ([#513](https://github.com/open-mmlab/mmsegmentation/pull/513))
- Make tags as comment ([#505](https://github.com/open-mmlab/mmsegmentation/pull/505))
- Use MMCV EvalHook ([#438](https://github.com/open-mmlab/mmsegmentation/pull/438))
### V0.12 (04/03/2021)
**Highlights**

View File

@ -1,6 +1,6 @@
# Copyright (c) Open-MMLab. All rights reserved.
__version__ = '0.12.0'
__version__ = '0.13.0'
def parse_version_info(version_str):

View File

@ -112,7 +112,11 @@ def test_epoch_eval_hook():
logger=runner.logger)
def multi_gpu_test(model, data_loader, tmpdir=None, gpu_collect=False):
def multi_gpu_test(model,
data_loader,
tmpdir=None,
gpu_collect=False,
efficient_test=False):
results = single_gpu_test(model, data_loader)
return results