[CodeCamp2023-154] Add semantic label to the segmentation visualization results (#3229)
Thanks for your contribution and we appreciate it a lot. The following instructions would make your pull request more healthy and more easily get feedback. If you do not understand some items, don't worry, just make the pull request and seek help from maintainers. ## Motivation [Add semantic label to the segmentation visualization results 分割可视化结果中加上语义信息 #154](https://github.com/open-mmlab/OpenMMLabCamp/discussions/154) corresponding issue: [跑出来结果之后怎么在结果图片上获取各个语意部分的区域信息? #2578](https://github.com/open-mmlab/mmsegmentation/issues/2578) ## Modification 1. mmseg/apis/inference.py, add withLabels in visualizer.add_datasample call, to indicate whether add semantic label 2. mmseg/visualization/local_visualizer.py, add semantic labels by opencv; modify the demo comment description 3. mmseg/utils/__init__.py, add bdd100k datasets to test local_visualizer.py **Current visualize result** <img width="637" alt="image" src="https://github.com/open-mmlab/mmsegmentation/assets/35064479/6ef6ce02-1d82-46f8-bde9-a1d69ff62df8"> **Add semantic label** <img width="637" alt="image" src="https://github.com/open-mmlab/mmsegmentation/assets/35064479/00716679-b43a-4794-8499-9bfecdb4b78b"> ## Test results **tests/test_visualization/test_local_visualizer.py** test results:(MMSegmentation/tests/data/pseudo_cityscapes_dataset/leftImg8bit/val/frankfurt/frankfurt_000000_000294_leftImg8bit.png) <img width="643" alt="image" src="https://github.com/open-mmlab/mmsegmentation/assets/35064479/6792b7d2-2512-4ea9-8500-1a7ed2d5e0dc"> **demo/inference_demo.ipynb** test results: <img width="966" alt="image" src="https://github.com/open-mmlab/mmsegmentation/assets/35064479/dfc0147e-fb1a-490a-b6ff-a8b209352d9b"> ----- ## Drawbacks config opencv thickness according to image size <img width="496" alt="image" src="https://github.com/open-mmlab/mmsegmentation/assets/35064479/0a54d72c-62b1-422c-89ae-69dc753fe0fc"> I have no idea of dealing with label overlapping for the time beingpull/3542/head
parent
30a3f94f3e
commit
1235217667
|
@ -158,6 +158,7 @@ def show_result_pyplot(model: BaseSegmentor,
|
|||
draw_pred: bool = True,
|
||||
wait_time: float = 0,
|
||||
show: bool = True,
|
||||
withLabels: Optional[bool] = True,
|
||||
save_dir=None,
|
||||
out_file=None):
|
||||
"""Visualize the segmentation results on the image.
|
||||
|
@ -177,10 +178,14 @@ def show_result_pyplot(model: BaseSegmentor,
|
|||
that means "forever". Defaults to 0.
|
||||
show (bool): Whether to display the drawn image.
|
||||
Default to True.
|
||||
withLabels(bool, optional): Add semantic labels in visualization
|
||||
result, Default to True.
|
||||
save_dir (str, optional): Save file dir for all storage backends.
|
||||
If it is None, the backend storage will not save any data.
|
||||
out_file (str, optional): Path to output file. Default to None.
|
||||
|
||||
|
||||
|
||||
Returns:
|
||||
np.ndarray: the drawn image which channel is RGB.
|
||||
"""
|
||||
|
@ -208,7 +213,8 @@ def show_result_pyplot(model: BaseSegmentor,
|
|||
draw_pred=draw_pred,
|
||||
wait_time=wait_time,
|
||||
out_file=out_file,
|
||||
show=show)
|
||||
show=show,
|
||||
withLabels=withLabels)
|
||||
vis_img = visualizer.get_image()
|
||||
|
||||
return vis_img
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
# yapf: disable
|
||||
from .class_names import (ade_classes, ade_palette, cityscapes_classes,
|
||||
from .class_names import (ade_classes, ade_palette, bdd100k_classes,
|
||||
bdd100k_palette, cityscapes_classes,
|
||||
cityscapes_palette, cocostuff_classes,
|
||||
cocostuff_palette, dataset_aliases, get_classes,
|
||||
get_palette, isaid_classes, isaid_palette,
|
||||
|
@ -27,5 +28,6 @@ __all__ = [
|
|||
'cityscapes_palette', 'ade_palette', 'voc_palette', 'cocostuff_palette',
|
||||
'loveda_palette', 'potsdam_palette', 'vaihingen_palette', 'isaid_palette',
|
||||
'stare_palette', 'dataset_aliases', 'get_classes', 'get_palette',
|
||||
'datafrombytes', 'synapse_palette', 'synapse_classes'
|
||||
'datafrombytes', 'synapse_palette', 'synapse_classes', 'bdd100k_classes',
|
||||
'bdd100k_palette'
|
||||
]
|
||||
|
|
|
@ -1,8 +1,10 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
from typing import Dict, List, Optional
|
||||
|
||||
import cv2
|
||||
import mmcv
|
||||
import numpy as np
|
||||
import torch
|
||||
from mmengine.dist import master_only
|
||||
from mmengine.structures import PixelData
|
||||
from mmengine.visualization import Visualizer
|
||||
|
@ -42,8 +44,8 @@ class SegLocalVisualizer(Visualizer):
|
|||
>>> import numpy as np
|
||||
>>> import torch
|
||||
>>> from mmengine.structures import PixelData
|
||||
>>> from mmseg.data import SegDataSample
|
||||
>>> from mmseg.engine.visualization import SegLocalVisualizer
|
||||
>>> from mmseg.structures import SegDataSample
|
||||
>>> from mmseg.visualization import SegLocalVisualizer
|
||||
|
||||
>>> seg_local_visualizer = SegLocalVisualizer()
|
||||
>>> image = np.random.randint(0, 256,
|
||||
|
@ -60,7 +62,7 @@ class SegLocalVisualizer(Visualizer):
|
|||
>>> seg_local_visualizer.add_datasample(
|
||||
... 'visualizer_example', image,
|
||||
... gt_seg_data_sample, show=True)
|
||||
""" # noqa
|
||||
""" # noqa
|
||||
|
||||
def __init__(self,
|
||||
name: str = 'visualizer',
|
||||
|
@ -76,9 +78,32 @@ class SegLocalVisualizer(Visualizer):
|
|||
self.alpha: float = alpha
|
||||
self.set_dataset_meta(palette, classes, dataset_name)
|
||||
|
||||
def _draw_sem_seg(self, image: np.ndarray, sem_seg: PixelData,
|
||||
def _get_center_loc(self, mask: np.ndarray) -> np.ndarray:
|
||||
"""Get semantic seg center coordinate.
|
||||
|
||||
Args:
|
||||
mask: np.ndarray: get from sem_seg
|
||||
"""
|
||||
loc = np.argwhere(mask == 1)
|
||||
|
||||
loc_sort = np.array(
|
||||
sorted(loc.tolist(), key=lambda row: (row[0], row[1])))
|
||||
y_list = loc_sort[:, 0]
|
||||
unique, indices, counts = np.unique(
|
||||
y_list, return_index=True, return_counts=True)
|
||||
y_loc = unique[counts.argmax()]
|
||||
y_most_freq_loc = loc[loc_sort[:, 0] == y_loc]
|
||||
center_num = len(y_most_freq_loc) // 2
|
||||
x = y_most_freq_loc[center_num][1]
|
||||
y = y_most_freq_loc[center_num][0]
|
||||
return np.array([x, y])
|
||||
|
||||
def _draw_sem_seg(self,
|
||||
image: np.ndarray,
|
||||
sem_seg: PixelData,
|
||||
classes: Optional[List],
|
||||
palette: Optional[List]) -> np.ndarray:
|
||||
palette: Optional[List],
|
||||
withLabels: Optional[bool] = True) -> np.ndarray:
|
||||
"""Draw semantic seg of GT or prediction.
|
||||
|
||||
Args:
|
||||
|
@ -94,6 +119,8 @@ class SegLocalVisualizer(Visualizer):
|
|||
palette (list, optional): Input palette for result rendering, which
|
||||
is a list of color palette responding to the classes.
|
||||
Defaults to None.
|
||||
withLabels(bool, optional): Add semantic labels in visualization
|
||||
result, Default to True.
|
||||
|
||||
Returns:
|
||||
np.ndarray: the drawn image which channel is RGB.
|
||||
|
@ -112,6 +139,43 @@ class SegLocalVisualizer(Visualizer):
|
|||
for label, color in zip(labels, colors):
|
||||
mask[sem_seg[0] == label, :] = color
|
||||
|
||||
if withLabels:
|
||||
font = cv2.FONT_HERSHEY_SIMPLEX
|
||||
# (0,1] to change the size of the text relative to the image
|
||||
scale = 0.05
|
||||
fontScale = min(image.shape[0], image.shape[1]) / (25 / scale)
|
||||
fontColor = (255, 255, 255)
|
||||
if image.shape[0] < 300 or image.shape[1] < 300:
|
||||
thickness = 1
|
||||
rectangleThickness = 1
|
||||
else:
|
||||
thickness = 2
|
||||
rectangleThickness = 2
|
||||
lineType = 2
|
||||
|
||||
if isinstance(sem_seg[0], torch.Tensor):
|
||||
masks = sem_seg[0].numpy() == labels[:, None, None]
|
||||
else:
|
||||
masks = sem_seg[0] == labels[:, None, None]
|
||||
masks = masks.astype(np.uint8)
|
||||
for mask_num in range(len(labels)):
|
||||
classes_id = labels[mask_num]
|
||||
classes_color = colors[mask_num]
|
||||
loc = self._get_center_loc(masks[mask_num])
|
||||
text = classes[classes_id]
|
||||
(label_width, label_height), baseline = cv2.getTextSize(
|
||||
text, font, fontScale, thickness)
|
||||
mask = cv2.rectangle(mask, loc,
|
||||
(loc[0] + label_width + baseline,
|
||||
loc[1] + label_height + baseline),
|
||||
classes_color, -1)
|
||||
mask = cv2.rectangle(mask, loc,
|
||||
(loc[0] + label_width + baseline,
|
||||
loc[1] + label_height + baseline),
|
||||
(0, 0, 0), rectangleThickness)
|
||||
mask = cv2.putText(mask, text, (loc[0], loc[1] + label_height),
|
||||
font, fontScale, fontColor, thickness,
|
||||
lineType)
|
||||
color_seg = (image * (1 - self.alpha) + mask * self.alpha).astype(
|
||||
np.uint8)
|
||||
self.set_image(color_seg)
|
||||
|
@ -137,7 +201,7 @@ class SegLocalVisualizer(Visualizer):
|
|||
visulizer will use the meta information of the dataset i.e.
|
||||
classes and palette, but the `classes` and `palette` have
|
||||
higher priority. Defaults to None.
|
||||
""" # noqa
|
||||
""" # noqa
|
||||
# Set default value. When calling
|
||||
# `SegLocalVisualizer().dataset_meta=xxx`,
|
||||
# it will override the default value.
|
||||
|
@ -161,7 +225,8 @@ class SegLocalVisualizer(Visualizer):
|
|||
wait_time: float = 0,
|
||||
# TODO: Supported in mmengine's Viusalizer.
|
||||
out_file: Optional[str] = None,
|
||||
step: int = 0) -> None:
|
||||
step: int = 0,
|
||||
withLabels: Optional[bool] = True) -> None:
|
||||
"""Draw datasample and save to all backends.
|
||||
|
||||
- If GT and prediction are plotted at the same time, they are
|
||||
|
@ -187,6 +252,8 @@ class SegLocalVisualizer(Visualizer):
|
|||
wait_time (float): The interval of show (s). Defaults to 0.
|
||||
out_file (str): Path to output file. Defaults to None.
|
||||
step (int): Global step value to record. Defaults to 0.
|
||||
withLabels(bool, optional): Add semantic labels in visualization
|
||||
result, Defaults to True.
|
||||
"""
|
||||
classes = self.dataset_meta.get('classes', None)
|
||||
palette = self.dataset_meta.get('palette', None)
|
||||
|
@ -202,7 +269,7 @@ class SegLocalVisualizer(Visualizer):
|
|||
'segmentation results.'
|
||||
gt_img_data = self._draw_sem_seg(gt_img_data,
|
||||
data_sample.gt_sem_seg, classes,
|
||||
palette)
|
||||
palette, withLabels)
|
||||
|
||||
if (draw_pred and data_sample is not None
|
||||
and 'pred_sem_seg' in data_sample):
|
||||
|
@ -213,7 +280,7 @@ class SegLocalVisualizer(Visualizer):
|
|||
'segmentation results.'
|
||||
pred_img_data = self._draw_sem_seg(pred_img_data,
|
||||
data_sample.pred_sem_seg,
|
||||
classes, palette)
|
||||
classes, palette, withLabels)
|
||||
|
||||
if gt_img_data is not None and pred_img_data is not None:
|
||||
drawn_img = np.concatenate((gt_img_data, pred_img_data), axis=1)
|
||||
|
|
Loading…
Reference in New Issue